

BrainVision Analyzer Automation Reference Manual

Manual Version 003 as of Analyzer Software Version 2.0.2*

valid as of September 30, 2013*

* Valid until publication of a new version of the manual

Blank page

Imprint

Any trademarks mentioned in this User Manual are the protected property of their rightful owners.

All rights reserved, including the right to translate the document.

The content of the manual is the intellectual property of Brain Products GmbH. No part of the manual may be reproduced or distributed in any form (by printing, photocopying or any other method) without the express written permission of Brain Products GmbH.

Subject to change without notice.

© 2013 Brain Products GmbH

Blank page

Contents

	List of	figures	ix
	List of	tables	xi
	About	this manual	. 13
	Structu	re and content of the new Automation Reference Manual	13
	Who is	the manual intended for?	. 13
	Conver	itions used in the manual	. 13
	Revisio	n history	. 14
	Report	ing errors and support	. 14
	Prefac	e	. 15
Chapter 1	Under	lying concepts	. 17
	1.1	First steps and simple examples	. 17
	1.2	Overview of the object hierarchy	20
	1.3	Creating new data sets with "NewHistoryNode"	, 22
	1.3.1	Specifying basic properties of data sets	22
	1.3.2	Defining the contents of data sets	23
	1.3.3	Creating data sets suitable for history templates	24
	1.3.4	Efficient handling of data from the parent node	25
	1.4	Processing arrays with "FastArray"	. 28
	1.5	Dynamic parameterization	. 30
	1.6	Alternatives to the integrated BASIC interpreter	. 31
Chapter 2	Objec	t classes	33
	2.1	Application	. 33
	2.2	Channel	36
	2.3	ChannelPosition	40
	2.4	Channels	. 41
	2.5	CurrentWorkspace	42
	2.6	Dataset	. 44
	2.7	DeletedHistoryNode	. 47

v

	2.8	DeletedHistoryNodes	48
	2.9	Dongle	49
	2.10	FastArray	50
	2.11	HistoryExplorer	58
	2.12	HistoryFile	59
	2.13	HistoryFiles	62
	2.14	HistoryNode	63
	2.15	HistoryNodes	67
	2.16	HistoryTemplateNode	68
	2.17	Landmark	69
	2.18	Landmarks	70
	2.19	License	71
	2.20	Licenses	72
	2.21	Marker	73
	2.22	Markers	75
	2.23	NewHistoryNode	76
	2.24	ProgressBar	83
	2.25	Segment	86
	2.26	Segments	87
	2.27	Transformation	88
	2.28	Window	89
	2.29	Windows	92
	2.30	Workspace	93
	2.31	Workspaces	94
Chapter 3	Callat	le transforms	95
	3.1	Band Rejection	96
	3.2	Complex Demodulation	97
	3.3	Formula Evaluator	98
	3.4	IIR Filters	99
Chapter 4	Enum	erator types	101
	4.1	VisionDataType	101

	4.2	VisionDataUnit	103
	4.3	VisionSegType	104
	4.4	VisionLayerIncFunction	105
Chapter 5	Error c	odes	107
Chapter 6	Analyz	er Automation .NET	111
	6.1	Overview	111
	6.2	Subscribing to Automation events	113
	6.3	Using "NewHistoryNode"	114
	6.4	Additional extensions	116
	Glossa	ry	117

viii Blank page

List of figures

Chapter 1 Underlying concepts

- 1-1 Syntax assistance for the Application object 17
- 1-2 Don't just take it on trust: The debugger in action 18
- 1-3 Object hierarchy 20

x Blank page

List of tables

Chapter 3 Callable transforms

- 3-1 Parameters for Band Rejection 96
- 3-2 Parameters for Complex Demodulation 97
- 3-3 Parameters for Formula Evaluator 98
- 3-4 Parameters for IIR Filters 99

Chapter 4 Enumerator types

- 4-1 Values of the enumerator type "VisionDataType" 101
- 4-2 Values of the enumerator type "VisionDataUnit" 103
- 4-3 Values of the enumerator type "VisionSegType" 104
- 4-4 Values of the enumerator type "VisionLayerIncFunction" 105

Chapter 5 Error codes

5-1 Error codes 107

xii Blank page

Structure and content of the new Automation Reference Manual

The new Analyzer Automation Reference Manual now includes an extensive theoretical chapter that uses short examples to familiarize you with important basic concepts of Analyzer Automation and which are intended to facilitate your first steps in creating your own macros and programs.

The Reference Manual has six chapters:

- <u>Chapter 1</u> explains important fundamental concepts of Analyzer Automation and provides simple programming examples.
- <u>Chapter 2</u> describes all the object classes of the Analyzer in detail.
- <u>Chapter 3</u> describes the transforms which you can currently call using Analyzer Automation together with the parameters used.
- Chapter 4 describes the enumerator types used in Analyzer Automation.
- <u>Chapter 5</u> contains a list of all error codes returned by Analyzer Automation methods.
- Chapter 6 provides an overview of Analyzer Automation for .NET.

Who is the manual intended for?

The Reference Manual is aimed at users from the fields of psychophysiological and neurological research who have a knowledge of programming in BASIC or a comparable programming language.

Conventions used in the manual

The manual uses the following typographical conventions:

monospaced	A monospaced font is used to indicate text or characters to be en- tered at the keyboard, such as source code and programming ex- amples.
italic	Italic text is used to identify menus, menu commands, dialog box- es, options, and the names of files and folders.

underscore

Underscored text indicates a cross-reference or a web address.

The blue dot indicates the end of a chapter.

The manual also uses the following symbols to help you find your way around:

A *cross-reference* refers to a section of the manual or an external document that has a bearing on the running text at this point.

The *New* symbol indicates that new material has been added at this point.

Revision history

Page..... Status Subject
Title page .new Remove of CE mark

Reporting errors and support

You can search for updates of this manual on our Web site using the following link: <u>http://</u>www.brainproducts.com/downloads.php?kid=5&tab=2.

If you require support or if you discover a mistake in the manual, the software or during operation, please contact:

Brain Products GmbH Zeppelinstraße 7 D-82205 Gilching Phone: +49 8105 73384 – 0 Fax: +49 8105 73384 – 505 Web site: <u>http://www.brainproducts.com</u> Email: <u>support@brainproducts.com</u>

This Reference Manual describes how to address and control the BrainVision Analyzer application from your own macros or programs. In order to achieve this, the Analyzer defines a hierarchy of object classes that represent its components and contents, such as history nodes or EEG views.

You can use the OLE Automation technology integrated in Windows® to access these object classes and thus interact with the Analyzer. This provides a simple way of implementing a broad spectrum of applications ranging from simple scripts up to complex calculations.

The SAX BASIC interpreter integrated in the Analyzer makes access to Analyzer Automation extremely simple. We recommend that you first become familiar with simple automation applications in the interpreter.

Throughout this manual, we assume that you are familiar with the BASIC programming language and are confident in using constructs such as method calls, loops and conditional statements. All object definitions and programming examples are given in BASIC syntax. In principle, however, Analyzer Automation can be addressed using other programming languages.

This Reference Manual refers to Version 2.0 of the Analyzer. The object classes in this version of the Analyzer are extensions of the object classes in Analyzer 1.0, and existing macros or scripts should continue to run without errors.

Chapter 1 Underlying concepts

When you control the Analyzer using Analyzer Automation, you are working with object classes that represent the contents of the Analyzer application that is currently running. If you have already worked with the Analyzer, you will be familiar with the majority of such content, such as <u>history files</u> or markers.

In this chapter, we shall use simple examples to describe how to access the running Analyzer application from the integrated SAX BASIC interpreter. In further sections, we shall provide an overview of the object hierarchy in Analyzer Automation and explain some of the most important object classes in detail.

1.1 First steps and simple examples

The Analyzer application object Application has been predefined in the SAX BASIC interpreter and can be used directly. To do this, open the interpreter by choosing *Macros > Macros > New* from the Analyzer ribbon. An editing window opens.

The interpreter provides all the usual functions of an integrated development environment (IDE), including a debugger and syntax assistance. Controls for operating the interpreter are located at the top of the editing window. You can, for example, run the macro by clicking the *Start/Resume* button.

If you now type the text Application followed by a period in the Main method, the dropdown list providing syntax assistance opens (see <u>Figure 1-1</u>). Starting with the Application object, you can use the syntax assistance to easily build the calls needed for a simple macro.

Figure 1-1. Syntax assistance for the Application object

This is a simple sample program:

Sub	Main
	HistoryFiles(1).Open
	Dim Node As HistoryNode
	<pre>Set Node = Application.HistoryFiles(1).HistoryNodes(1)</pre>
	FileName = Node.Name
	ChannelName = Node.Dataset.Channels(1).Name
	Application.HistoryFiles(1).Close()
	<pre>MsgBox("Node: " & FileName & " Channel: " & ChannelName)</pre>

End Sub

When you run the macro, the name of the <u>raw data node</u> of the first history file in the <u>work-space</u> is displayed together with the name of the first EEG channel. In this context, it is important that the history file is opened using Open and closed using Close after use.

This process reflects the fact that when you are working with the Analyzer normally, you have to open history files before you can use their contents. The access modalities in Analyzer Automation reflect those that apply when working normally with the Analyzer and are subject to the same constraints.

The programming example below assumes that a further <u>history node</u> exists below the raw data node of the first history file in the workspace. The macro renames this node as *Hello World*:

Sub Main

HistoryFiles(1).Open Dim Node As HistoryNode Set Node = Application.HistoryFiles(1).HistoryNodes(1) Node.HistoryNodes(1).Name = "Hello World" Application.HistoryFiles(1).Close() End Sub

If you click the gray bar in the editing window to set a breakpoint before you call the macro, you can explicitly stop the program before Close is called. This allows you to check whether the node has been renamed before the <u>history tree</u> is collapsed again (see Figure 1-2).

Figure 1-2. Don't just take it on trust: The debugger in action

In the Analyzer, it is not possible to make changes to existing history nodes and rename channels, for example. You can only create new nodes with the required properties. There are only a few exceptions to this rule, such as the ability to rename nodes. Accordingly, virtually all the properties of objects that you can access using Application are read-only.

You can use Analyzer Automation to create new history nodes. This functionality is represented by separate object classes that are not accessed via the application object Application.

1.2 Overview of the object hierarchy

Figure 1-3 shows the hierarchy of the object classes of Analyzer Automation. The chart does not contain all the defined objects and is only intended as an overview. The individual object classes are described in detail in Chapter 2 as of page 33.

The left-hand side of the chart shows objects that you can address directly or indirectly via the Application object. These objects represent the current state of the Analyzer application.

As a rule, the name of the subordinate object class corresponds to the name of the property via which the corresponding object can be addressed. For example, the object Application has a property CurrentWorkspace, that you can use to access an object of the class CurrentWorkspace.

The right-hand side of the chart shows objects that are independent of the Application object. These objects are used to create new content for the Analyzer. Thus, for example, you can use the class NewHistoryNode to create a new history node.

Some object classes in Analyzer Automation are *collections* and act as containers for objects. Collection objects are highlighted in color in the chart. The class name of the objects in the collection is shown in parentheses.

The objects in a collection can be indexed with a number. The first index is always 1 rather than 0. Some collections also permit indexing via the name or title of the objects they contain. This method of indexing is only sensible, however, when the name occurs just once in the collection.

If arrays are used, it is assumed that the first index is 1.

Some of the object classes in Analyzer Automation have what is known as a "default element". This is a method or property that can be addressed without naming it explicitly in the code. For example, the default element of the Channel object is the DataPoint property. Consequently the two calls below are equivalent:

fValue = Channels(1).DataPoint(1)

fValue = Channels(1)(1)

1.3 Creating new data sets with "NewHistoryNode"

You can use an object of the class NewHistoryNode to create either a new history file or a new history node within an existing history file. You do this by first creating the NewHisto-ryNode object and specifying its basic properties. You then write the data values to be contained in the new data set to the NewHistoryNode object and optionally specify other properties of the data set.

There are two ways of creating an object of the NewHistoryNode class. If you have included the type library for Analyzer Automation, you can write the following:

Dim nhn as New NewHistoryNode

The type library is automatically included in the integrated BASIC, and you can use this statement. If you have not included the type library, you must instead write the following:

Set pb = CreateObject("VisionAnalyzer.NewHistoryNode")

1.3.1 Specifying basic properties of data sets

Some properties of a data set are of crucial importance and must be defined before data is written to the data set. This includes the specification as to whether the data set is to form a new history file or a new history node within an existing history file. The data type and the length of the data set must also be defined.

The basic properties of the data set are defined by calling the methods Create, CreateEx or CreateWithChannelMap. This call is issued immediately after the NewHistoryNode object has been created. The specific application scenario will determine which of the methods you should use and what individual specifications you need to make.

The CreateEx method is an extension of the Create method that is used if the new data set is to contain multiple frequency levels (e.g. wavelet data). In all other respects, it is identical to the Create method, which we shall describe in detail below.

Because the Create method has several different application scenarios, it is difficult to identify which of the parameters must be specified in which cases simply on the basis of the parameter list. The list of application scenarios below is intended to help you identify which parameters you should use in order to create the required data set:

If you wish to create a new history file, you must pass the file name you wish to assign to the Create method. You must also specify the length and type of the data. The new history file will be listed in the Secondary tab in the history tree of the Analyzer. Example:

nhn.Create("Raw Data", Nothing, "New File Name", False, viDtTimeDomain, 4, 1500, 4000)

The raw data node of a new history file with the name *New File Name* is created in the example. The node contains four channels of time data with a sampling rate of 250 Hz.

If you wish to create a new <u>child node</u> containing the same data as its <u>parent node</u>, you must pass the parent node to the Create method. In this application scenario, you can, for instance, modify markers and channel properties in the new node. It is not necessary to make any further specifications regarding the length and type of the data. Example:

nhn.Create("New Child Node", ActiveNode, "", True)

A new child node of the node that is active in the Analyzer main window is created in the example. The name of the child node is *New Child Node* and the value True of the argu-

ment InheritData specifies that the data of the parent node is to be taken over unchanged.

If you wish to create a new child node and define the data of this node yourself, you must pass the parent node to the Create method and also specify the length and type of the data. Example:

nhn.Create("New Child Node", ActiveNode, "", False, viDtTimeDomain, 4, 1500, 4000)

A new child node of the node that is active in the Analyzer main window is created in the example. The name of the child node is *New Child Node*. It contains four channels of time data with a sampling rate of 250 Hz.

If you want to create a child node that both inherits the data of some of the channels of its parent node and also modifies or rearranges channels, you must use the Create-WithChannelMap method. This method is described in detail in <u>Section 1.3.4 as of</u> page 26. Example:

Dim channels(1 To 3) As Long channels(1)=5 channels(2)=0 channels(3)=1 nhn.CreateWithChannelMap("New Child Node", ActiveNode, channels)

A new child node of the node that is active in the Analyzer main window is created in the example. The name of the child node is *New Child Node*. It contains channels 5 and 1 of the parent node and a newly defined channel.

1.3.2 Defining the contents of data sets

After you have used Create, CreateEx or CreateWithChannelMap to define the basic properties of the data set you wish to create, you can use the other properties and methods of the NewHistoryNode object.

At this time, some of the contents of the data set such as any data inherited from the parent node have already been defined. Default values are used for all other contents of the Ne-wHistoryNode object. You can overwrite these as necessary to suit your requirements.

The example below shows how to define the contents of the NewHistoryNode object:

```
Sub Main
   ' Creates the object and defines basic properties.
   Set nhn = New NewHistoryNode
   nhn.Create "BasicTest", ActiveNode, "", False, _
        viDtTimeDomain, 32, 250, ActiveNode.Dataset.SamplingIn-
   terval
    ' Defines channel properties. All other channel properties
    ' retain the properties inherited from the parent node as
    ' defaults.
   nhn.SetChannelName 1, "Channel B"
   nhn.SetChannelName 2, "Channel A"
   nhn.SetChannelPosition 4, 1, 0, 90
    ' Sets an interval marker
   nhn.AddMarker 0, 201, 20, "Bad Interval", "", False
    ' Specifies data: Reads 250 points from channel 3 of the parent
    ' node and writes them to channel 1. All other data points
    ' retain the default value 0.0.
   Dim Data() As Single
   ActiveNode.Dataset(3).GetData 1, 250, Data
   nhn.WriteData 1, 1, 250, Data
    ' Writes a sample text for "Operation Infos"
   nhn.Description = "Line1" & vbCrLf & "Line2"
    ' Concludes the operation and creates the node
   nhn.Finish
End Sub
```

As you can see from the example, the Finish method is used to complete creation of the data set. The data set is only displayed in the Analyzer after Finish has been called. If the data set should no longer be created, for instance as a result of user input, you should use Cancel instead of the Finish method.

Note the following convention: If you use the integrated BASIC interpreter to create a data set, execution of your macro always ends with the call to Finish. This means that any lines that follow Finish will no longer be executed. You can, however, jump to these lines using the GoTo command.

1.3.3 Creating data sets suitable for history templates

If you create a new data set with NewHistoryNode, you can use it in <u>history templates</u> provided that certain prerequisites are met:

- You must have created a child node within a history file using the NewHistoryNode object, because history files as such cannot be used in history templates.
- ▶ The data set must have been created using the integrated BASIC interpreter.
- The new node must be created as a child node of the node that is active in the Analyzer main window. To do this, use the predefined variable ActiveNode.

The macro below shows a simple example of a node that can be used in a template. It inherits the data from its parent node and sets an additional marker at data point 200:

```
Sub Main
```

Set nhn = New NewHistoryNode
nhn.Create "Added Marker", ActiveNode
nhn.AddMarker 0, 201, 1, "Stimulus", "S1", False
nhn.Finish

End Sub

The example program in Section 1.3.2 on page 23 also creates a node that can be used in a template. Note that in this example the data of the parent node is read using the variable Ac-tiveNode. This approach ensures that the new node is only dependent on the parent node and can be created unproblematically from within a history template.

When the new node is generated, the entire macro code is copied to the node. If you rightclick the node and choose *Operation Infos*... from the context menu, the macro code is shown in addition to the <u>Operation Infos</u>. You can use the new node that has been created in this way as a regular <u>transform</u> in history templates or drag it onto other nodes.

1.3.4 Efficient handling of data from the parent node

If you initialize a new history node using Create and take over the data from the parent node without making any changes (InheritData = True argument), no copy is made of the data in the new node. If, on the other hand, you write custom data to the node (InheritData = False argument), all the data of the new node is saved in the history file. Depending on the application scenario, the quantity of data involved can be very large.

To prevent large quantities of data from being copied unnecessarily, you should check whether the new node contains any unchanged channels from the parent node. If this is the case, you can initialize the new node using CreateWithChannelMap. This method represents a compromise between the two application scenarios for Create described here.

You can use the CreateWithChannelMap method to implement the following operations in the new node:

- Delete a channel of the parent node
- Add a new channel
- Change the sequence of the channels

The behavior of the CreateWithChannelMap method is determined by the ChannelMap argument. This argument is an array of integer values. A new channel with data is created for each item in the array. The value of each item specifies the data the channel is to contain:

- The value 0 means that the channel is to contain new data that you then have to write to the new node in the macro using WriteData.
- A value greater than 0 means that the channel is to contain the data from the corresponding channel in the parent node. Note that this data is **not** stored in the new node. It is instead read directly from the parent node.

Any channels of the parent node that are not contained in the ChannelMap array are not inherited by the new node. You can rearrange channels from the parent node by changing the sequence in which you insert them in the ChannelMap array.

When you use WriteData to write the data for new channels to the new node, the number of channels to be written is equal to the number of times that you have used the value 0 in the array ChannelMap. As far as WriteData is concerned, the new channels form a "reduced" data set made up of only those channels to which you have assigned the value 0 in the ChannelMap.

For example, if you have used the array (0, 1, 0, 2), you must write the data for two new channels. These channels have the numbers 1 and 2 when you use WriteData to write the individual channels. In the new node, however, these channels appear at the first and third positions in the channel list. Example:

```
Sub Main
   Dim a(1 to 4) as Long
   Channels(1)=0
   Channels(2) = 1
   Channels(3) = 0
   Channels(4) = 2
   Set hn = ActiveNode
   Set nhn = New NewHistoryNode
   nhn.CreateWithChannelMap "BasicTest", ActiveNode, Channels
   ' Constant value of 50 for channel 1
   Dim Data(1 To 10000) As Single
   For i = 1 To 10000
         Data(i) = 50
   Next i
   ' Note: Index is 1 because this is the first 0 in ChannelMap
   nhn.WriteData 1, 1, 10000, Data
   ' Constant value of 100 for channel 3
   For i = 1 To 10000
         Data(i) = 100
   Next i
   ' Note: Index is 2 because this is the second 0 in ChannelMap
   nhn.WriteData 2, 1, 10000, Data
```

```
' Channel properties are inherited from the parent node,
' new channels are assigned default values
nhn.SetChannelName 1, "New Channel 1"
nhn.SetChannelName 3, "New Channel 2"
nhn.SetChannelName 4, "Renamed Channel"
nhn.Finish
```

End Sub

1.4 Processing arrays with "FastArray"

If you are using the integrated BASIC interpreter, you can use the auxiliary class FastArray to access arrays efficiently. This class provides a number of simple arithmetic operations (addition, multiplication, etc.) that allow you to manipulate the elements of the array. The calculations are then performed significantly faster than if you had implemented the operations directly in the BASIC interpreter.

As a rule, the arithmetic operations use a source array (SourceData parameter) and a target array (TargetData parameter). The target array is at the same time the left-hand operand. In operations with only one operand, the target array is simultaneously the source array. The source array remains unchanged in operations with two operands.

All indices used in the operations refer to the start of an array. This means that an array declared with

Dim Data(12 to 24) As Single

has its first item at Data (12). An index parameter of 1 refers to this entry. To avoid confusion, we therefore recommend that you declare an array as

Dim Data(1 to ...) As Single

All arrays that are used in the operations must be one-dimensional and must already have a defined field length.

The methods of the FastArray class use parameters with the same names. The parameters StartIndex, Step and Count are used to describe a subset of the elements in an array. Depending on how they are used, these parameters are prefixed with Source or Target (for the source or target array respectively). The resulting subset is determined as follows:

StartIndex determines the first item of the subset. The next item is offset by Step and each subsequent one also. Count is the maximum number of items. If the array is too small to accommodate Count elements described in this fashion, the quantity of data is limited by the end of the array. If Count is set to -1, the subset is only limited by the end of the array.

Examples (StartIndex, Step, Count):

- 1, 1, -1: Entire array (default setting)
- ▶ 1, 2, -1: All odd-numbered elements of an array
- > 200, -1, -1: All elements as of position 200 in reverse order
- ▶ 7, 32, -1: The 7th, 39th, 71st item

If, for example, you have requested multiplexed data using Dataset.GetData(), and the number of channels is 32, then 7, 32, -1 corresponds to the data of the seventh channel.

Channels in arrays can only be defined in this manner if the data is not complex and only has one frequency level. You can use the following method to define subsets that describe channels whose data points are, for instance, complex (two values per data point):

```
RepeatNextOperation(Count As Long, [TargetIndexIncrement As Long],
   [SourceIndexIncrement As Long])
```

This method instructs the subsequent method to repeat Count times. For every repetition, the default indices are incremented by TargetIndexIncrement and SourceIndexIncrement.

For example, if you have complex data with 32 channels, the seventh channel can be copied to a separate array as follows:

Dim fa As New FastArray

Dim ChannelData() As Single

• • •

SourceData = ds.GetData(...)

fa.RepeatNextCommand(-1,,64)

ChannelData = fa.GetSelectedElements(SourceData, 13, , 2)

The first data point of the seventh channel starts at position 13. This is the start index. Two points are copied. Following this, the start index of the source field is increased by 64 and the operation is repeated up to the limits of the array.

1.5 Dynamic parameterization

You can create new history nodes by calling <u>primary transforms</u> available in the Analyzer in Analyzer Automation. To do this, the <u>Transformation</u>. Do method is used to pass parameters to the transform in the form of a string (see the description of the method on <u>page 84</u>). This functionality is currently only available for a selection of transforms. A list of supported transforms and their parameters is given in <u>Chapter 3 as of page 91</u>.

The advantage of this approach compared with calling a transform via the *Transformations* tab (see the Application. ExecuteMenuItem method on page 33) is that it enables dynamic parameterization. In other words, the parameters for the transform can be determined at runtime. This means, for example, that results of previously completed operations can be taken into account.

If you create a new history node with Transformation.Do, you can use this node in history templates provided that certain prerequisites are met:

- > The history node must have been created using the integrated BASIC interpreter.
- The new node must be created as a child node of the node that is active in the Analyzer main window. To do this, use the predefined variable ActiveNode.

Note the following convention: If you use the integrated BASIC interpreter to create a new data set, execution of your macro always ends with the call to Do. This means that any lines that follow Do will no longer be executed. You can, however, jump to these lines using the GoTo command.

When the new node is generated, the entire macro code is copied to the node. If you rightclick the node and choose *Operation Infos...* from the context menu, the macro code is shown in addition to the Operation Infos.

You can use the new node that has been created in this way as a regular transform in history templates or drag it onto other nodes.

Example program that performs a filter operation:

Sub Main

Transformation.Do "Filters", "HighCutoff=30,48;Notch=50", ActiveNode, "FilterTest"

End Sub

1.6 Alternatives to the integrated BASIC interpreter

The integrated BASIC interpreter allows you to create your own macros without the need to install a separate development environment in addition to the Analyzer. You can, however, also address Analyzer Automation from an external development environment using the OLE Automation technology integrated in Windows®. This allows you, for instance, to use a programming language other than BASIC.

If you wish to use Analyzer Automation, it is an advantage if the development environment is able to include type libraries for OLE Automation. This is the case with Microsoft Visual Studio, for instance. The terms used vary somewhat between development environments, which means that the functionality you need may go under the name of *Add COM reference* or *Include ActiveX library*.

If you include a type library in a development environment, a list of the type libraries available on the system will usually be displayed. The type library used by Analyzer Automation appears in the list as *Vision Analyzer 1.0 Type Library*.

If you do not wish to include the type library for Analyzer Automation in your development environment, you may be able to use appropriate constructs provided by your programming language to directly access the OLE Automation objects. Example in BASIC syntax:

Set analyzer = CreateObject("VisionAnalyzer.Application")

analyzer.HistoryFiles("odd_phob_2").Open()

When you access Analyzer Automation from an external program, data that is requested from Analyzer Automation by the program is copied to the memory of the external program. This causes a certain loss of processing speed. On the other hand, it is possible that the external program can perform its own calculations significantly faster than the integrated BASIC interpreter.

The object definitions and programming examples given in this manual use BASIC syntax. If you are using a different programming language, the syntax of this language will provide similar constructs (e.g. NULL or NIL in place of Nothing) and you can translate the objects accordingly using a uniform pattern.

Chapter 1 Underlying concepts

2.1 Application

2.1.1 Description

The Application class contains only one object, which represents the entire program. This is the default object. The methods and properties of this object can be addressed directly in SAX BASIC. Thus, for example, <code>Visible corresponds to Application.Visible</code>.

2.1.2 Methods

Prompts the user for the response Yes or No. This function should always be used in place of the integrated MsgBox function if this line of code could potentially be executed inside a history template.	Ask
If the BASIC script is run inside a history template, and messages are only output as a log, execution is not interrupted by Ask, and the response is always taken to be Yes. You can use this setting when you run the history template using the function Apply to History File(c).	
Function Ask (Text as String) as Long	Definition
	Demonster
Text lext of the prompt displayed	Parameters
Returns $vbYes$ (numeric 6) or $vbNo$ (numeric 7) depending on the response	Return value
Executes an item in the ribbon. This is entered as text. The parameter is not case-sensitive, and spaces/full stops in the menu text are ignored. \ is used to distinguish between the various levels in the ribbon. For reasons of compatibility, it is still possible to address the names of the menu items used in Analyzer Version 1.0	ExecuteMenultem
Note that some menu items can only be used when certain prerequisites have been met. For	
instance, a data set must be active in the Analyzer main window before a transform can be	
applied to it.	
Sub ExecuteMenuItem (MenuItem as String)	Definition
MenuItem Name of the item	Parameters
The IIR Filters transform can be executed using either	Example
ExecuteMenuItem "Transformations\Artifact Rejection/Reduction\Data	
Filtering\IIR Filters" Or	
ExecuteMenuItem "Transformations\Filters".	
Prompts the user for the response <i>OK</i> or <i>Cancel</i> . This function should always be used in place of the integrated MsgBox function if this line of code could potentially be executed inside a history template.	Message

	If the BASIC script is run inside a history template, and messages are only output as a log,
	execution is not interrupted by Message, and the response is always taken to be OK. You
	can use this setting when you run the history template using the function Apply to History
	File(s).
Definition	Function Message(Text as String) as Long
Parameters	${\tt Text}$ Text of the message displayed
Return value	Returns vbOk (numeric 1) or vbCancel (numeric 2) depending on the response
MessageStatus	Outputs a text in the status bar.
Definition	Sub MessageStatus(Text as String)
Parameters	Text Text displayed in the status bar
Msg	Outputs a text to a message box. The user can only respond with OK. This function should
	always be used in place of the integrated ${\tt MsgBox}$ function if this line of code could poten-
	tially be executed inside a history template.
	If the BASIC script is run inside a history template, and messages are only output as a log,
	execution is not interrupted by ${\tt Msg}$, and the response is always taken to be OK. You can use
	this setting when you run the history template using the function <i>Apply to History File(s)</i> .
Definition	Function Msg(Text as String) as Long
Parameters	${\tt Text}$ Text of the message displayed
Return value	Always returns vbOk (numeric 1)
Quit	Terminates the program.
Definition	Sub Quit()

2.1.3 Properties

ActiveTemplateNode	Write-protected This object describes the template node that is currently being executed if the Analyzer is ex- ecuting a history template. If not, the value is Nothing.
Definition	ActiveTemplateNode As HistoryTemplateNode
ActiveWindow	Write-protected The active tab in the Analyzer main window. This value is Nothing if no tab is open.
Definition	ActiveWindow As Window
CurrentWorkspace	Write-protected

The currently open workspace.	
CurrentWorkspace As CurrentWorkspace	Definition
Write-protected	Dongle
The <u>dongle</u> currently in use.	
Dongle as Dongle	Definition
Write-protected	HistoryExplorer
The <u>History Explorer</u> .	
HistoryExplorer As HistoryExplorer	Definition
Write-protected	HistoryFiles
Collection containing all the history files in the currently open workspace.	
HistoryFiles As HistoryFiles	Definition
Write-protected	InstalledComponents
List of installed program components as text.	
InstalledComponents as String	Definition
Write-protected	Sublicenses
Collection containing the currently available <u>licenses</u> for optional program components of	
the Analyzer.	
Sublicenses as Licenses	Definition
Write-protected	TempFileFolder
Folder for temporary files.	
TempFileFolder as String	Definition
If the value of this flag is ${\tt True}$ (-1), the Analyzer is currently executing a history template.	TemplateMode
TemplateMode As Boolean	Definition
Write-protected	Version
Specifies the current program version.	
Version As Double	Definition
This flag specifies whether the Analyzer main window is visible (True or -1) or not (False	Visible
or 0).	
Visible As Boolean	Definition

Windows	Write-protected
	Collection containing all the tabs in the Analyzer main window.
Definition	Windows As Windows
WorkFileFolder	Write-protected
	Folder for the <u>work files</u> (workspace files, macros and history templates).
Definition	WorkFileFolder As String
Workspaces	Write-protected
	Collection containing all the workspaces in the Workfiles folder.
Definition	Workspaces As Workspaces

2.2 Channel

2.2.1 Description

The Channel object describes a channel in a history node. Since DataPoint is the default element, it is easy to access an individual data point.

2.2.2 Example

Dim fValue As Single
Dim hn As HistoryNode
Dim hf As HistoryFile
Dim ch As Channel
' First history file
<pre>Set hf = HistoryFiles(1)</pre>
hf.Open
' First data set
Set $hn = hf(1)$
' First channel
Set ch = hn.Dataset(1)
' First data point
f Value = ch(1)
' Alternative access using the channel name
Set ch = hn.Dataset("FP1")
' First data point
f Value = ch(1)
hf.Close
Alternative short version:
Dim fValue As Single
HistoryFiles(1).Open
fValue = HistoryFiles(1)(1).Dataset(1)(1)
HistoryFiles(1).Close

You can read large quantities of data significantly faster if you read in a vector using the Channel.GetData() method. If you wish to read data from multiple channels, you should use the Dataset.GetData() method. For detailed information, refer to Section 2.6 as of page 43.

2.2.3 Methods

Reads a number of data points into an existing vector.	GetData
If the data set contains complex data, each data point has two values: The first value is the	
real part of the number and the second value is the imaginary part. This means, for instance,	
that Data(1) is the real part of the first data point and Data(2) is the imaginary part. The	
second data point is thus assigned to Data(3) and Data(4), etc.	
Sub GetData(Position As Long, Points As Long, Data() As Single)	Definition
Position Position of the data points to be read in the data set (1 –)	Parameters
Points Number of data points to be read	
Data Vector that receives the data points that have been read	
Dim channel As Channel	Example
Dim node as HistoryNode	
Dim fVector() As Single	
HistoryFiles(1).Open	

	' Raw data node of the first history file
	Set node = HistoryFiles(1)(1)
	' First channel in the node
	Set channel = node.Dataset(1)
	channel.GetData(1, 1000, fVector)
	HistoryFiles(1).Close
PropertyName	Returns the name of a channel property. This function can be used to list all channel properties including user-defined channel prop- erties.
Deminition	Function Propertyname (Number As Long) As String
Parameters Return value	Number Number of the channel property (1 –) Name of the channel property with the number specified or an empty string if this property does not exist
Example	This example lists the names of all channel properties including any user-defined channel properties that may be present. Dim channel As Channel
	HistoryFiles(1).Open
	Set channel = HistoryFiles(1)(1).Dataset(1)
	s = ""
	For i = 1 To channel.PropertyCount
	s = s & channel.PropertyName(i) & vbCrLf
	Next i
	' Output to message window
	Application.Msg(x)
	HistoryFiles(1).Close
PropertyValue Definition	Returns the value of a channel property. Function PropertyValue (Name As String) As Variant
Parameters Return value	Name Name of the channel property to be read Returns the value of the specified channel property or Nothing if the property does not exist

2.2.4 Properties

Default element, write-protected	DataPoint
Reads the value of a data point. If the data set involves complex data, this variable specifies	
the real part of the complex number.	
DataPoint(Index As Long) As Single	Definition
Index Specifies the position in the data set (1)	Parameters
Write-protected Reads the value of a data point in a data set comprising multiple frequency levels ("layers"), such as a data set comprising continuous wavelets. If the data set involves complex data, this variable specifies the real part of the complex number. This property corresponds to DataPoint.	DataPointLayered
DataPointLayered(Index As Long, Layer As Long) As Single	Definition
Index Specifies the position in the data set (1 –) Layer Specifies the frequency level	Parameters
Write-protected Reads the value of the imaginary part of a data point if the data set contains complex data	ImgPoint
ImgPoint (Index As Long) As Single	Definition
Index Specifies the position in the data set (1 –)	Parameters
Write-protected Reads the value of the imaginary part of a data point in a data set comprising multiple fre- quency levels ("layers"), such as a data set comprising continuous wavelets. This property corresponds to ImgPoint.	ImgPointLayered
ImgPointLayered(Index As Long, Layer As Long) As Single	Definition
Index Specifies the position in the data set (1 –) Layer Specifies the frequency level	Parameters
Write-protected	Name
Name As String	Definition
Write-protected Position of the channel on the surface of the head.	Position
Position As ChannelPosition	Definition

PropertyCount	Write-protected	
	Number of property values of the channel. This number includes all channel properties in-	
	cluding any user-defined channel properties.	
Definition	PropertyCount As Long	
ReferenceChannel	Write-protected	
	Name of reference channel.	
Definition	ReferenceChannel As String	
SecondPosition	Write-protected	
	The second position is used when an additional position on the surface of the head is as-	
	signed to a channel in addition to its own coordinates (for instance with the Coherence trans-	
	form).	
Definition	SecondPosition As ChannelPosition	
Unit	Write-protected	
	Unit for the data on this channel, such as μV , μV^2 , etc. (see also Section 4.2 as of	
	page 98).	
Definition	Unit As VisionDataUnit	
UnitString	Write-protected	
	The unit for the channel as a text string. This specification is used if the unit is not one of the	
	predefined units. In this event, the convention is to use the value <code>viDuUnitless</code> for the	
	Unit property.	
Definition	UnitString As String	

2.3 ChannelPosition

2.3.1 Description

The ChannelPosition object describes the position of a channel.

2.3.2 Properties

Write-protected Phi in degrees.

<u>Phi As Single</u>	Definition
Write-protected	Radius
Radius in millimeters. A value of 0 indicates an invalid position specification. The value of 1	
assumes the head to be a perfect sphere with a uniform radius.	
Radius As Single	Definition
Write-protected	Theta
Theta in degrees.	
Theta As Single	Definition

2.4 Channels

2.4.1 Description

The Channels object is a collection of Channel objects.

2.4.2 Properties

Write-protected	Count
Number of channels in the collection.	
Count As Long	Definition
Default element, write-protected	ltem
Returns a Channel object from the collection. You can use either the channel number or the	
channel name to specify the channel.	
Item(NameOrIndex As Variant) As Channel	Definition
NameOrIndex Specifies the channel number (1 –) or the channel name	Parameters

2.5 CurrentWorkspace

2.5.1 Description

The CurrentWorkspace object represents the currently open workspace.

2.5.2 Methods

Load	Loads the specified workspace file FileName.	
Definition	Sub Load(FileName As String, [SingleHistoryFile As String])	
Parameters	<pre>FileName Name of the workspace file or fully-qualified path of the workspace file if it is not located in the Workfiles folder SingleHistoryFile (optional) Allows you to load a single history file</pre>	
Save Definition	Saves the currently open workspace file.	
SaveAs Definition	Saves the currently open workspace file under a new name. Sub SaveAs (FileName As String)	
Parameters	FileName Specifies the name of the workspace file	

2.5.3 Properties

ExportFileFolder	Write-protected Default folder for exported files.
Definition	ExportFileFolder As String
FullName	Write-protected Name of the workspace file including fully-qualified path.
Definition	FullName As String
HistoryFileFolder	Write-protected
	Folder for history files.
Definition	HistoryFileFolder As String

Write-protected Base name of the workspace file without folder and file name extension	Name
Name As String	Definition
Write-protected	RawFileFolder
Folder for raw data.	
RawFileFolder As String	Definition

2.6 Dataset

2.6.1 Description

The Dataset object represents a data set. This data set is either the entire data of a history node or the data of an individual segment within a node.

Properties prefixed with Layer are only used with data containing multiple frequency levels (layers) such as continuous wavelets.

2.6.2 Methods

Reads a number of data points and returns them as a vector.	GetData
If the ChannelList parameter is not used, the data of all channels is returned.	
The data is returned in multiplexed format. This means that all the data of the first sampling	
point is returned first, followed by that of the second sampling point and so on. This format	
corresponds to the internal data management format in the history nodes. This results in a	
significantly higher processing speed compared with Channel.GetData().	
If the data set contains complex data, each data point has two values: The first value is the	
real part of the number and the second value is the imaginary part. This means, for instance,	
that $Data(1)$ is the real part of the first data point and $Data(2)$ is the imaginary part.	
Function GetData(Position As Long, Points As Long,	Definition
[ChannelList as Variant]) as Single()	
Position Position of the data points to be read in the data set (1 –)	Parameters
Points Number of data points to be read	
ChannelList (optional) Contains either an array of channels or a single channel. Channels can be specified by their number (1 –) or their name.	
Vector containing the data	Return value

Example	Each of the following examples reads the first 2000 data points from the raw data set of the first history file. The first GetData call reads all the channels. The remaining calls show how individual or multiple channels can be addressed. Dim ds As Dataset HistoryFiles(1).Open Set ds = HistoryFiles(1)(1).Dataset Dim Data() as Single Data = ds.GetData(1, 2000) Data = ds.GetData(1, 2000, Array("FP1", "Fp2")) Data = ds.GetData(1, 2000, Array(1, 12)) Data = ds.GetData(1, 2000, "F3") Dim a(1 to 2) as Long a(1) = 1 a(2) = 12 Data = ds.GetData(1, 2000, a)
PropertyName	Returns the name of a property. This function can be used to list all properties including user-defined properties.
Definition	Function PropertyName (Number As Long) As String
Parameters Return value	Number Number of the property (1 –) Name of the property with the number specified or an empty string if this property does not exist
PropertyValue	Returns the value of the specified property.
Definition	Function PropertyValue(Name As String) As Variant
Parameters	Name Name of the property to be read
Return value	Value of the specified property or Nothing if the property does not exist

2.6.3 Properties

Averaged

Write-protected This flag specifies whether the data set has been produced directly or indirectly from an averaging operation (True or -1) or has not been averaged (False or 0).

Averaged As Boolean	Definition
Write-protected Number of segments included in averaging. Only valid if the value of the Averaged flag is	AverageCount
True (-1). <u>AverageCount As Long</u>	Definition
Default element, write-protected Collection of channel objects in the data set. You can use the channel objects to read prop- erties of a channel or to query data of this channel.	Channels
Channels As Channels	Definition
Write-protected Increment function between the frequency levels (layers) of a data set. Frequency levels of this type occur with continuous wavelets, for instance. You will find the possible values of this property in Chapter 4 as of page 97	LayerFunction
LayerFunction As VisionLayerIncFunction	Definition
Write-protected	LayerLowerLimit
LayerLowerLimit As Double	Definition
Write-protected Number of frequency levels (layers) in the data set.	Layers
Layers As Long	Definition
Write-protected The value of the highest frequency level (layer) of a data set with multiple frequency levels. LayerUpperLimit As Double	LayerUpperLimit
Write-protected Length of the data set in data points.	Length
Length As Long	Definition
Write-protected Collection of markers in the data set.	Markers
Markers As Markers	Definition
Write-protected	PropertyCount

	Number of property values of the data set. This number includes all properties including any user-defined properties.
Definition	PropertyCount As Long
SamplingInterval	Write-protected
	Sampling interval of the data set. Specified in microseconds for data in the time domain and
	in hertz for data in the frequency domain.
	The following formula converts the sampling interval for data in the time domain to the sam-
	<pre>pling rate: Frequency = 1000000.0 / SamplingInterval</pre>
Definition	SamplingInterval As Double
SegmentationType	Write-protected
	Specifies the segmentation type of the data set (\diamondsuit see also Section 4.3 on page 99).
Definition	SegmentationType as VisionSegType
Туре	Write-protected
	Type of the data in the data set (🤜 see also <u>Section 4.1 on page 97</u>).
Definition	Type As VisionDataType

2.7 DeletedHistoryNode

2.7.1 Description

The DeletedHistoryNode object represents a deleted history node. This node is stored for a time in its former parent node and can be restored if needed.

2.7.2 Methods

Undelete Definition Restores a deleted node together with its child nodes. Sub_Undelete()

Name

Definition

2.7.3 Properties

Write-protected Name of the deleted node. Name as String

2.8 DeletedHistoryNodes

2.8.1 Description

The DeletedHistoryNodes object lists the deleted child nodes of a HistoryNode.

2.8.2 Properties

Write-protected	Count
Number of deleted nodes in the collection.	
Count As Long	Definition
Default element, write-protected	Item
Returns a DeletedHistoryNode object from the collection. You can use the position of	
the node in the collection or its name to specify the deleted node.	
Item(NameOrIndex As Variant) As DeletedHistoryNode	Definition
NameOrIndex Specifies the position of the node in the collection (1) or its name	Parameters

2.9 Dongle

2.9.1 Description

The Dongle object describes the dongle currently in use.

2.9.2 Properties

NetworkDongle	Write-protected
	This hag is set if the Analyzer is being used with a <u>network dongle</u> .
Definition	NetworkDongle As Boolean
InternalSerialNumber	Write-protected
	Specifies the internal serial number of the dongle.
Definition	InternalSerialNumber As Long

2.10 FastArray

2.10.1 Description

The FastArray object is an auxiliary class for accelerating access to arrays. It only makes sense to use this class in the integrated BASIC interpreter. For further information on how to use the FastArray object, refer to Section 1.4 as of page 28.

2.10.2 Example

You have to create an object of the type FastArray in order to be able to use its methods. You can use the following line of code in the integrated BASIC interpreter:

Dim Fa as New FastArray

You can then use the object in order to perform calculations:

Data = node.Dataset.GetData(1,2000)

Fa.AddValue(Data, 5.0)

2.10.3 Methods

Adds a subset of SourceData to a subset of TargetData. The operation is limited by the smaller subset of the two arrays. Sub AddArray(TargetData() As Single, SourceData() As Single,

AddArray

Definition

<pre>[TargetStartIndex As Long = 1], [TargetStep As Long = 1],</pre>	
<pre>[SourceStartIndex As Long = 1], [SourceStep As Long = 1],</pre>	
[Count As Long = -1])	
TargetData Array containing output data	Parameters
SourceData Array containing input data	
<pre>TargetStartIndex Position (1) of the first item to be processed in the array containing output data</pre>	
${\tt TargetStep}$ Offset between two items to be processed in the array containing output data	
SourceStartIndex (optional) Position (1 –) of the first item to be processed in the array containing input data	
SourceStep (optional) Offset between two items to be processed in the array containing in- put data	
Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.	
Adds the fixed value Value to a subset of TargetData.	AddValue
Value is incremented by ValueIncrement after each operation.	
Sub AddValue(TargetData() As Single, Value As Single,	Definition
<pre>[StartIndex As Long = 1], [Step As Long = 1],</pre>	
[Count As Long = -1], [ValueIncrement As Single = 0])	
TargetData Array containing output data	Parameters
Value Value to be added	
StartIndex (optional) Position (1 –) of the first item to be processed in the array	
${\tt Step}$ (optional) Offset between two items to be processed in the array	
Count (optional) Maximum number of items to be processed. This specification is ignored if	
the end of the array is reached before this number of elements has been processed. Spec-	
ify the value -1 to continue processing up to the end of the array.	
ValueIncrement (optional) The value of Value is incremented by this value after each ad-	
dition operation.	
Calculates the arc tangent of a subset of Target Data and SourceData:	Atan2Array
TargetData = Atan2(TargetData/SourceData)	·····,
The result is stored in TargetData in radian values (range +/- u).	
Sub Atan2Array(TargetData() As Single, SourceData() As Single,	Definition
[TargetStartIndex As Long = 1], [TargetStep As Long = 1],	
[SourceStartIndex As Long = 1], [SourceStep As Long = 1],	
[Count As Long = -1])	
TargetData Array containing output data	Parameters

	 SourceData Array containing input data TargetStartIndex (optional) Position (1 –) of the first item to be processed in the array containing output data TargetStep (optional) Offset between two items to be processed in the array containing output data SourceStartIndex (optional) Position (1 –) of the first item to be processed in the array containing input data SourceStep (optional) Offset between two items to be processed in the array containing input data SourceStep (optional) Offset between two items to be processed in the array containing input data CourceStep (optional) Offset between two items to be processed in the array containing input data Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Specify the value -1 to continue processing up to the end of the array.
CopyArray	Copies a subset of SourceData into a subset of TargetData. The operation is limited by the smaller subset of the two arrays.
Definition	<pre>Sub CopyArray(TargetData() As Single, SourceData() As Single, [Tar- getStartIndex As Long = 1], [TargetStep As Long = 1], [Source- StartIndex As Long = 1], [SourceStep As Long = 1], [Count As Long = -1])</pre>
Parameters	 TargetData Array containing output data SourceData Array containing input data TargetStartIndex (optional) Position (1) of the first item to be processed in the array containing output data TargetStep (optional) Offset between two items to be processed in the array containing output data SourceStartIndex (optional) Position (1) of the first item to be processed in the array containing input data SourceStartIndex (optional) Position (1) of the first item to be processed in the array containing input data SourceStep (optional) Offset between two items to be processed in the array containing input data SourceStep (optional) Offset between two items to be processed in the array containing input data Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Specify the value -1 to continue processing up to the end of the array.
CopyValue	Copies the fixed value Value into a subset of TargetData. Value is incremented by ValueIncrement after each operation.
Definition	<pre>Sub CopyValue(TargetData() As Single, Value As Single, [StartIndex As Long = 1], [Step As Long = 1], [Count As Long = -1], [ValueIncrement As Single = 0])</pre>
Parameters	TargetData Array containing output data Value Value to be added

<pre>StartIndex (optional) Position (1) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array. ValueIncrement (optional) The value of Value is incremented by this value after each as- signment.</pre>	
Divides a subset of TargetData by a subset of SourceData:	DivideArray
TargetData = TargetData / SourceData	
The operation is limited by the smaller subset of the two arrays.	
Sub DivideArray(TargetData() As Single, SourceData() As Single,	Definition
<pre>[TargetStartIndex As Long = 1], [TargetStep As Long = 1],</pre>	
<pre>[SourceStartIndex As Long = 1], [SourceStep As Long = 1],</pre>	
[Count As Long = -1])	
TargetData Array containing output data	Parameters
SourceData Array containing input data	
<pre>TargetStartIndex (optional) Position (1) of the first item to be processed in the array containing output data</pre>	
<pre>TargetStep (optional) Offset between two items to be processed in the array containing out- put data</pre>	
SourceStartIndex (optional) Position (1 –) of the first item to be processed in the array containing input data	
SourceStep (optional) Offset between two items to be processed in the array containing in- put data	
Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.	
Divides a subset of TargetData by the fixed value Value:	DivideValue
TargetData = TargetData / Value	
Value is incremented by ValueIncrement after each operation.	
Sub DivideValue(TargetData() As Single, Value As Single, [StartIn-	Definition
<pre>dex As Long = 1], [Step As Long = 1],</pre>	
[Count As Long = -1], [ValueIncrement As Single = 0])	
TargetData Array containing output data	Parameters
Value Value to be added	
StartIndex (optional) Position (1 –) of the first item to be processed in the array	
Step (optional) Offset between two items to be processed in the array	

	Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array. ValueIncrement (optional) The value of Value is incremented by this value after each di- vision operation.
GetMaximumValue	Returns the largest value of a subset of SourceData.
Definition	<pre>Function GetMaximumValue(SourceData() As Single,</pre>
	[StartIndex As Long = 1], [Step As Long = 1],
	[Count As Long = -1]) As Single
Parameters	<pre>SourceData Array containing input data StartIndex (optional) Position (1) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.</pre>
Return value	The largest value of the subset
GetMeanValue	Returns the mean value of a subset of SourceData.
Definition	<pre>Function GetMeanValue(SourceData() As Single,</pre>
	[StartIndex As Long = 1], [Step As Long = 1],
	[Count As Long = -1]) As Single
Parameters	<pre>SourceData Array containing input data StartIndex (optional) Position (1) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.</pre>
Return value	The mean value of the subset
GetMinimumValue Definition	Returns the smallest value of a subset of SourceData. Function GetMinimumValue(SourceData() As Single,
	[StartIndex As Long = 1], [Step As Long = 1], [Count As Long = -1]) As Single
Parameters	SourceData Array containing input data StartIndex (optional) Position (1 –) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array. The smallest value of the subset	Return value
Returns a subset of SourceData. Function GetSelectedElements(SourceData() As Single,	GetSelectedElements Definition
[StartIndex As Long = 1], [Step As Long = 1],	
[Count As Long = -1]) As Single()	
SourceData Array containing input data StartIndex (optional) Position (1 –) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Specify the value -1 to continue processing up to the end of the array.	Parameters
Array containing the subset	Return value
Multiplies a subset of TargetData by a subset of SourceData: TargetData = TargetData * SourceData The operation is limited by the smaller subset of the two arrays.	MultiplyArray
Sub MultiplyArray(TargetData() As Single, SourceData() As Single, [TargetStartIndex As Long = 1], [TargetStep As Long = 1], [SourceStartIndex As Long = 1], [SourceStep As Long = 1],	Definition
[Count As Long = -1])	
<pre>TargetData Array containing output data SourceData Array containing input data TargetStartIndex (optional) Position (1) of the first item to be processed in the array containing output data TargetStep (optional) Offset between two items to be processed in the array containing out- put data SourceStartIndex (optional) Position (1) of the first item to be processed in the array containing input data</pre>	Parameters
put data Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.	

Multiplies the fixed value Value by a subset of TargetData:

MultiplyValue

	TargetData = TargetData * Value
	Value is incremented by ValueIncrement after each operation.
Definition	Sub MultiplyValue(TargetData() As Single, Value As Single,
	[StartIndex As Long = 1], [Step As Long = 1],
	<pre>[Count As Long = -1], [ValueIncrement As Single = 0])</pre>
Parameters	TargetData Array containing output data
	Value Value to be added
	StartIndex (optional) Position (1 –) of the first item to be processed in the array
	${\tt Step}$ (optional) Offset between two items to be processed in the array
	Count (optional) Maximum number of items to be processed. This specification is ignored if
	the end of the array is reached before this number of elements has been processed. Spec-
	ify the value -1 to continue processing up to the end of the array.
	ValueIncrement (optional) The value of Value is incremented by this value after each di- vision operation.
RectifyArray	Converts all elements of a selected subset into their absolute value (rectification). Target-
	Data is both the source and the target.
Definition	<pre>Sub RectifyArray(TargetData() As Single, [StartIndex As Long = 1],</pre>
	[Step As Long = 1], [Count As Long = -1])
Parameters	TargetData Array containing output data
	StartIndex (optional) Position (1 –) of the first item to be processed in the array
	${\tt Step}$ (optional) Offset between two items to be processed in the array
	${\tt Count}$ (optional) Maximum number of items to be processed. This specification is ignored if
	the end of the array is reached before this number of elements has been processed. Spec-
	ify the value -1 to continue processing up to the end of the array.
RepeatNextOperation	Repeats the next method call in the FastArray class the number of times specified by
	Count and increments the method parameter SourceIndex or TargetIndex on each
	call. This allows complex operations on subsets of the array to be formulated simply.
	Irrespective of the parameters used, every operation is limited by the end of the array. If the
	next operation does not have these parameters, the relevant parameter is ignored by $\ensuremath{\mathtt{Re-}}$
	peatNextOperation.
	The ${\tt TargetIndexIncrement}\ and\ {\tt SourceIndexIncrement}\ parameters\ must\ not\ con-$
	tain negative values. The ${\tt Step}$ parameter of the subsequent operation is also not permitted
	to be negative.
Definition	<pre>Sub RepeatNextOperation([Count As Long = -1],</pre>
	<pre>[TargetIndexIncrement As Long = 1],</pre>
	[SourceIndexIncrement As Long = 1])
Parameters	Count Specifies the number of times the operation is repeated

<pre>TargetIndexIncrement Specifies the value by which the TargetIndex parameter of the method call is incremented on each repetition</pre>		
SourceIndexIncrement Specifies the value by which the SourceIndex parameter of the method call is incremented on each repetition		
Calculates the square roots of all elements of a selected subset based on their absolute value. This means negative values are also allowed to be present in the output data set. Tar- getData is both the source and the target.	RootArray	
<pre>Sub RootArray(TargetData() As Single, [StartIndex As Long = 1], [Step As Long = 1], [Count As Long = -1])</pre>	Definition	
<pre>TargetData Array containing output data StartIndex (optional) Position (1) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.</pre>	Parameters	
Rotates all elements of a selected subset to the left. The first element gets the value of the second, the second the value of the third, and so on. The value that was originally first be- comes the last value.	RotateLeftArray	
Sub RotateLeftArray(TargetData() As Single,	Definition	
<pre>[StartIndex As Long = 1], [Step As Long = 1],</pre>		
[Count As Long = -1])		
<pre>TargetData Array containing output data StartIndex (optional) Position (1) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.</pre>	Parameters	
Rotates all elements of a selected subset to the right. The second element gets the value of the first, the third the value of the second, and so on. The value that was originally last becomes the first value.	RotateRightArray	
Sub RotateRightArray(TargetData() As Single,	Definition	
<pre>[StartIndex As Long = 1], [Step As Long = 1],</pre>		
[Count As Long = -1])		
TargetData Array containing output data StartIndex (optional) Position (1 –) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array	Parameters	

	Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.
SortArray	Sorts all elements of a selected subset in ascending order. <code>TargetData</code> is both the source and the target.
Definition	<pre>Sub SortArray(TargetData() As Single, [StartIndex As Long = 1], [Step As Long = 1], [Count As Long = -1])</pre>
Parameters	<pre>TargetData Array containing output data StartIndex (optional) Position (1) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.</pre>
SquareArray Definition	<pre>Squares all elements of a selected subset. TargetData is both the source and the target. Sub SquareArray(TargetData() As Single, [StartIndex As Long = 1], [Step As Long = 1], [Count As Long = -1])</pre>
Parameters	<pre>TargetData Array containing output data StartIndex (optional) Position (1) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Spec- ify the value -1 to continue processing up to the end of the array.</pre>
SubtractArray	Subtracts a subset of SourceData from a subset of TargetData: TargetData = TargetData - SourceData The operation is limited by the smaller subset of the two arrays.
Definition	<pre>Sub SubtractArray(TargetData() As Single, SourceData() As Single, [TargetStartIndex As Long = 1], [TargetStep As Long = 1], [SourceStartIndex As Long = 1], [SourceStep As Long = 1], [Count As Long = -1])</pre>
Parameters	<pre>TargetData Array containing output data SourceData Array containing input data TargetStartIndex (optional) Position (1) of the first item to be processed in the array containing output data TargetStep (optional) Offset between two items to be processed in the array containing out- put data SourceStartIndex (optional) Position (1) of the first item to be processed in the array containing input data</pre>

SourceStep (optional) Offset between two items to be processed in the array containing input data Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Specify the value -1 to continue processing up to the end of the array. **SubtractValue** Subtracts the fixed value Value from a subset of TargetData: TargetData = TargetData - Value Value is incremented by ValueIncrement after each operation. Sub SubtractValue(TargetData() As Single, Value As Single, Definition [StartIndex As Long = 1], [Step As Long = 1], [Count As Long = -1], [ValueIncrement As Single = 0]) TargetData Array containing output data Parameters Value Value to be added StartIndex (optional) Position (1 - ...) of the first item to be processed in the array Step (optional) Offset between two items to be processed in the array Count (optional) Maximum number of items to be processed. This specification is ignored if the end of the array is reached before this number of elements has been processed. Specify the value -1 to continue processing up to the end of the array. ValueIncrement (optional) The value of Value is incremented by this value after each subtraction operation.

2.11 HistoryExplorer

2.11.1 Description

The HistoryExplorer object represents the History Explorer.

2.11.2 Properties

This flag specifies whether the History Explorer is visible (True or -1) or not (False or 0).VisibleVisible As BooleanDefinition

2.12 HistoryFile

2.12.1 Description

The HistoryFile object represents a history file.

2.12.2 Methods

AppendFile	Appends the raw data of the specified history file to this history file. 🔷 For detailed infor- mation on this function, refer to the Analyzer User Manual.
Definition	Sub AppendFile(FileName As String)
Parameters	FileName Name of the history file to be appended
Example	The example appends the history file <i>P300b</i> to the history file <i>P300a</i> .
	Dim hf as HistoryFile
	<pre>Set hf = HistoryFiles("p300a")</pre>
	hf.AppendFile "p300b"
ApplyTemplate	Applies the specified history template to the history file.
	The file name can be specified in full or in part and, if possible, is completed automatically.
Definition	Sub ApplyTemplate(FileName As String)
Parameters	FileName Name of the history template to be used
Close	Closes the history file. This should be done as soon as the file is no longer needed because an open file may take up a considerable amount of memory in certain circumstances.
Definition	<u>Sub Close()</u>
Compress	Compresses the history file. If you frequently delete larger files (e.g. FFT) then empty spaces are often left in the history file due to performance reasons. These areas can be removed with the aid of compression.
Definition	<u>Sub Compress()</u>
FindNextNode	Searches for the next history node with the name specified in FindNode.
Definition	Function FindNextNode() As HistoryNode
Return value	Matching history node or Nothing if there is no further history node
FindNode	Searches for the first history node which has the specified name.

Function FindNode (Name As String) As HistoryNode	Definition
<pre>Name Name of the history node Matching history node or Nothing if there is no further history node The example uses FindNode and FindNextNode in a loop to rename all nodes with the name Average to Avg. Dim hn As HistoryNode Dim hf As HistoryFile Set hf = HistoryFiles(1) Set hn = hf.FindNode("Average") Do While Not hn Is Nothing hn Name = "Avg"</pre>	Parameters Return value Example
Set hn = hf.FindNextNode() Loop Opens the history file. It is only possible to access the history nodes contained in a history file after the history file has been opened. Sub Open()	Open Definition
Irrevocably deletes all history nodes in the history file that have been deleted but can still be	PurgeDeletedNodes

restored.	
Sub PurgeDeletedNodes()	Definition

2.12.3 Properties

Alias of the history file as used by the Analyzer for display purposes. When a workspace has been loaded, this name is initially identical to the Name property. A database program which controls the Analyzer can use this property to display test subject's names, for example.	DisplayName
DisplayName As String	Definition
Write-protected Name of the history file including the fully-qualified path.	FullName
FullName As String	Definition
Default element, write-protected	HistoryNodes

Definition	Collection containing the raw data nodes in this history file. These raw data nodes generally represent a <u>raw EEG file</u> . Most history files have just one raw data node because the raw EEG file contains one data set only. As well as raw files, the raw data nodes can also represent secondary history files such as grand averages. <u>HistoryNodes As HistoryNodes</u>
IsOpen	Write-protected
	The value of this flag indicates whether the history file is open.
Definition	IsOpen As Boolean
LinkedData	Write-protected The value of this flag indicates whether the history file represents a raw data set (<u>primary</u> history file).
Definition	LinkedData As Boolean
Name	Write-protected Base name of the history file without the folder and file name extension.
Definition	Name As String
SubjectInfos	Write-protected Information about the test subject. This information is not available with all file formats.
Definition	SubjectInfos As String

2.13 HistoryFiles

2.13.1 Description

The HistoryFiles object is a collection of HistoryFile objects.

2.13.2 Methods

FindFile	Searches for a history file by its base name without the folder and filename extension.
Definition	Function FindFile(Name As String) As HistoryFile
Parameters	Name Name of the history file

Deletes the specified history file.	KillFile
Sub KillFile(DisplayName as String)	Definition
DisplayName Alias of the history file	Parameters
Generates or, as appropriate, loads new history files if new raw data or history files were gen- erated after the workspace was loaded.	Refresh
Sub Refresh()	Definition
Sorts the history files in the collection and in the History Explorer display.	Sort
Sub Sort()	Definition

2.13.3 Properties

Write-protected	Count
Number of history files in the collection.	
Count As Long	Definition
Default element, write-protected	ltem
Returns a HistoryFile object from the collection. You can use the position of the file in the collection or its name to specify the history file.	
Item(DisplayNameOrIndex As Variant) As HistoryFile	Definition
DisplayNameOrIndex Specifies the position of the history file in the collection (1 –) or its alias	Parameters

2.14 HistoryNode

2.14.1 Description

The HistoryNode object describes a node in the tree structure of a history file (history tree). Such a node represents a data set. The data set is a raw file, or was created by a transform. Because the HistoryNodes property has been defined as the default element, it is very easy to access child nodes.

2.14.2 Example

You can access child nodes of the current node using either their name or their index in the collection of all child nodes. Because <code>HistoryNodes</code> has been specified as the default element, you can omit the property. This means that the lines of code

Set node2 = node.HistoryNodes("Segmentation")

and

Set node2 = node("Segmentation")

are identical in meaning. Multiple calls of this type can be easily chained:

Set hn = HistoryFiles("File1")("Segmentation")(1)("Average")

2.14.3 Methods

ApplyTemplate	Applies the specified history template to the history node.
Definition	Sub ApplyTemplate(FileName As String)
Parameters	FileName Name of the history template
Delete	Removes the history node and all its child nodes from the history file.
Definition	Sub Delete()
GetHeadSurface	Fills the Data array with the coordinates of a point cloud that describes the head surface.
Definition	Function GetHeadSurface(Data() As Single) as Boolean
Parameters	Data The data consists of a continuous sequence of coordinates that describe the points in the order radius, theta and phi.
Return value	If there are no coordinates, the function returns the value False.
Hide	Closes all open data windows that belong to this history node.
Definition	Sub Hide()
PurgeDeletedNodes	Irrevocably deletes all child nodes of this history node that have been deleted but can still be restored.
Definition	Sub PurgeDeletedNodes()
Show	Shows the data of the node as the active tab in the Analyzer main window. If a tab containing the data of the node is already open, a second tab is not opened.

Sub Show()	Definition
Shows the description that is stored in Description and Description2 in a dialog box. Sub ShowDescription()	ShowDescription Definition
2.14.4 Properties	
Write-protected	Class
Class As String	Definition
User comment. Comment As String	Comment Definition
Write-protected The value of this flag specifies whether the node contains data. The node can, for example,	ContainsData
also represent an <u>export component</u> . In this case it does not contain any data. <u>ContainsData As Boolean</u>	Definition
Write-protected The value of this flag specifies whether the data of this node is available. If the associated raw file is not in the raw data folder, then most data sets of a history file will not be available	DataAvailable
DataAvailable As Boolean	Definition
Describes the data that belongs to the history node. This object allows you to access the entire data set in order to query properties or data. In the case of segmented data, additional Dataset objects are available representing individual	Dataset
Dataset As Dataset	Definition
Write-protected	DeletedNodes
DeletedNodes As DeletedHistoryNodes	Definition
Write-protected	Description

	Description of the history node. This information describes the operation used to create the node, together with its associated parameters.
Definition	Description As String
Description2	Write-protected
	Detailed information on the operation used to create the node. This information can differ
	between input data sets even though the operation and parameters are the same. This infor- mation is also used for calculated operation results such as the signal-to-noise ratio (SNP)
	during averaging.
Definition	Description2 As String
FullPath	Write-protected
	Fully qualified path of the node.
	The path contains the name of the history file to which the node belongs and the name of all predecessor nodes separated by a /
Definition	FullPath As String
HistoryFile	Write-protected
	History file containing the history node.
Definition	HistoryFile As HistoryFile
HistoryNodes	Default element, write-protected
	Collection of child nodes of the node.
Definition	<u>HistoryNodes As HistoryNodes</u>
Landmarks	Write-protected
	Collection of landmarks of the node.
Definition	Landmarks As Landmarks
Name	Name of the node as shown in the History Explorer.
Definition	Name As String
ParentNode	Write-protected
	Parent node of the history node.
Definition	ParentNode as HistoryNode
RecordingInfos	Write-protected
	Information that was input during acquisition, e.g. comments or error messages. This infor-
	mation is normally only available for nodes which represent raw data. Whether information

Definition

is actually available or not also depends on the acquisition system and the file format being used. RecordingInfos As String

Segments
Definition
Version
Definition
Windows
Definition

2.15 HistoryNodes

2.15.1 Description

The HistoryNodes object is a collection of HistoryNode objects.

2.15.2 Properties

Write-protected	Count
Number of history nodes in the collection.	
Count As Long	Definition
Default element, write-protected	ltem
Returns a HistoryNode object from the collection. You can use the position of the node in	
the collection or its name to specify the history node.	
Item(NameOrIndex As Variant) As HistoryNode	Definition
NameOrIndex Specifies the position of the node in the collection (1 –) or its name	Parameters

2.16 HistoryTemplateNode

2.16.1 Description

The HistoyTemplateNode object describes an individual node in a history template. It is used in the Application.ActiveTemplateNode property.

2.16.2 Properties

 Description
 Write-protected

 Description of the node. This information describes the operation used to create the node, together with its associated parameters.

 Definition
 Description As String

2.17 Landmark

2.17.1 Description

The Landmark object allows significant head positions to be indicated.

2.17.2 Properties

Name	Write-protected
	Name of the landmark.
Definition	Name As String
Phi	Write-protected
	Phi in degrees.
Definition	<u>Phi As Single</u>

Write-protected	Radius
Radius in millimeters. A value of 0 indicates an invalid position specification. The value of 1	
assumes the head to be a perfect sphere with a uniform radius.	
Radius As Single	Definition
Write-protected	Theta
Theta in degrees.	
Theta As Single	Definition

2.18 Landmarks

2.18.1 Description

The Landmarks object is a collection of Landmark objects.

2.18.2 Properties

Write-protected	Count
Number of markers in the collection.	
Count As Long	Definition
Default element, write-protected	Item
Returns a Landmark object from the collection. You can use the position of the landmark in	
the collection or its name to specify the landmark.	
Item(NameOrIndex As Variant) As Landmark	Definition
NameOrIndex Specifies the position of the landmark in the collection (1) or its name	Parameters

2.19 License

2.19.1 Description

The License object describes a license for an optional program component of the Analyzer.

2.19.2 Properties

ID Definition	Write-protected The unique identification number of the license. ID as Long
Description	Write-protected
Definition	Description as String

2.20 Licenses

2.20.1 Description

The Licenses object is a collection of License objects.

2.20.2 Properties

Count	Write-protected Number of licenses in the collection.
Definition	Count As Long
Item	Default element, write-protected Returns a License object from the collection.
Definition	Item(Index As Long) As License
Parameters	Index Specifies the position of the license in the collection (1 –)

2.21 Marker

2.21.1 Description

The ${\tt Marker}$ object represents a single marker in a data set.

2.21.2 Methods

Returns the name of a property of the marker.	PropertyName	
This function can be used to list all properties of a marker including user-defined marker		
properties.		
Function PropertyName(Number As Long) As String	Definition	
Number Number of the marker property (1 –)	Parameters	
Name of the marker property with the number specified or an empty string if this property	Return value	
does not exist		
Returns the value of a marker property.	PropertyValue	
Function PropertyValue(Name As String) As Variant	Definition	
Name Name of the marker property to be read	Parameters	
Value of the specified marker property or Nothing if the property does not exist	Return value	

2.21.3 Properties

Write-protected	ChannelNumber
Channel to which the marker refers (1) . The value 0 means that the marker relates to all	
channels.	
ChannelNumber As Long	Definition
Write-protected	DateTime
Date and time that the marker is representing. This value is only valid for "New Segment"	
markers.	
DateTime As Date	Definition
Write-protected	Description
Description of the marker.	
Description As String	Definition
Write-protected	Invisible
The value of this flag specifies whether the marker is invisible or not when the EEG is dis-	
played.	
Invisible As Boolean	Definition

Points	Write-protected
	Length or duration of the marker in data points.
Definition	Points As Long
Position	Write-protected
	Position of the marker in data points (1) .
Definition	Position As Long
PropertyCount	Write-protected
PropertyCount	Write-protected Number of property values of the marker. This number includes all marker properties includ-
PropertyCount	Write-protected Number of property values of the marker. This number includes all marker properties includ- ing any user-defined marker properties.
PropertyCount Definition	Write-protected Number of property values of the marker. This number includes all marker properties includ- ing any user-defined marker properties. <u>PropertyCount As Long</u>
PropertyCount Definition	Write-protected Number of property values of the marker. This number includes all marker properties includ- ing any user-defined marker properties. <u>PropertyCount As Long</u>
PropertyCount Definition Type	Write-protected Number of property values of the marker. This number includes all marker properties includ- ing any user-defined marker properties. PropertyCount As Long Write-protected
PropertyCount Definition Type	Write-protected Number of property values of the marker. This number includes all marker properties includ- ing any user-defined marker properties. <u>PropertyCount As Long</u> Write-protected Type of marker.
PropertyCount Definition Type Definition	Write-protected Number of property values of the marker. This number includes all marker properties includ- ing any user-defined marker properties. PropertyCount As Long Write-protected Type of marker. Type As String

2.22 Markers

2.22.1 Description

The Markers object is a collection of Marker objects.

2.22.2 Properties

Count	Write-protected Number of markers in the collection.
Definition	Count As Long
Item	Default element, write-protected Returns a Marker object from the collection.
Definition	Item(Index As Long) As Marker
Parameters	Index Specifies the position of the marker in the collection (1)

2.23 NewHistoryNode

2.23.1 Description

The NewHistoryNode object allows you to create new history nodes. You can create either new child nodes in an existing history file or the raw data node of a new secondary history file. The for further information on how to use the NewHistoryNode object, refer to Section 1.3 as of page 21.

2.23.2 Methods

Inserts a marker in the new data set.		
Sub AddMarker(ChannelNumber As Long, Position As Long,	Definition	
Points As Long, Type As String, Description As String,		
[Invisible As Boolean = False])		
ChannelNumber Number of the channel in which the marker is located. The value 0 means	Parameters	
that the marker relates to all channels.		
Position Position of the marker in the data set in data points (1 –)		
Points Length of the marker in data points		
\mathbb{T}_{ype} Marker type as freely definable text. Markers of the types "New Segment" and "Time 0" are special cases.		
Description Description of the marker. This appears in the <u>EEG view</u> .		
Invisible (optional) If the value of this flag is set to True, the marker is not shown in the EEG.		
Cancels creation of the new node. Once you have called the Create or CreateEx method,	Cancel	
you should call either Cancel or Finish before the end of your BASIC script.		
Sub Cancel()	Definition	
Specifies important properties of the new data set. This includes the position of the data set	Create	
In the history tree and the number of channels.		
After you have created a new NewHistoryNode object, you must initialize it using Create		
or CreateEx before you can specify additional properties.		
Sub Create(NodeName As String, ParentNode As HistoryNode,	Definition	
<pre>[FileName As String = ""], [InheritData As Boolean = True],</pre>		
[Type As VisionDataType = viDtTimeDomain],		

	terval As Double = 0])
Parameters	NodeName Name of the new node
	ParentNode The parent node of the new node. If the value of this parameter has been set to
	Nothing, FileName must be set.
	FileName (optional) File name without path or file name extension. Only use this parameter
	if you wish to create the new node as a raw data node of a new secondary history file. If this
	parameter has a value other than " " or $vbMullChar$, a new history file with this name will
	be created in the currently open workspace.
	InheritData (optional) If you create the node as a child node (see ParentNode parame-
	ter) and the value of this flag is set, the data, properties and markers of the parent node
	will be inherited. This allows you to add and delete markers, for instance. In this case, the
	Type, NumOfChannels, Length and SamplingInterval parameters are ignored.
	${\mathbb T}_{{\mathbb Y}{\mathbb P}{\mathbb P}}$ (optional) Type of the new data set. The four data types below are allowed:
	viDtTimeDomain
	viDtTimeDomainComplex
	viDtFrequencyDomain
	viDtFrequencyDomainComplex (vise also <u>Section 4.1 as of page 97</u>)
	NumOfChannels (optional) Number of channels in the new data set
	Length (optional) Length of the new data set in data points
	Samplinginterval (optional) Sampling interval in microseconds
CreateEx	Specifies important properties of the new data set. This includes the position of the data set
	in the history tree and the number of channels.
	After you have created a new NewHistoryNode object, you must initialize it using Create
	or CreateEx before you can specify additional properties.
	This function is an enhanced version of Create. It permits the creation of data sets with sev-
	eral frequency levels (layers) such as occur with continuous wavelets. The ${ t Type}$ parameter
	therefore also supports the data types <code>viDtTimeFrequencyDomain</code> and <code>viDTimeFre-</code>
	quencyDomainComplex.
Definition	Sub CreateEx(NodeName As String, ParentNode As HistoryNode, [File-
	<pre>Name As String = ""], [InheritData As Boolean = True],</pre>
	<pre>[Type As VisionDataType = viDtTimeDomain],</pre>
	[NumOfChannels As Long = 0], [Length As Long = 0], [SamplingIn-
	<pre>terval As Double=0], [Layers As Long = 1], [LayerLowerLimit As</pre>
	Double=0], [LayerUpperLimit As Double=0], [LayerFunction As Vi-
	<pre>sionLayerIncFunction= viLifLinear]))</pre>
Parameters	NodeName Name of the new node
	ParentNode Parent node of the new node. If the value of this parameter has been set to
	Nothing, FileName must be set.

[NumOfChannels As Long = 0], [Length As Long = 0], [SamplingInterval As Double = 0])
- FileName (optional) File name without path or file name extension. Only use this parameter if you wish to create the new node as a raw data node of a new secondary history file. If this parameter has a value other than "" or vbNullChar, a new history file with this name will be created in the currently open workspace.
- InheritData (optional) If you create the node as a child node (see ParentNode parameter) and the value of this flag is set, the data, properties and markers of the parent node will be inherited. This allows you to add and delete markers, for instance. In this case, the Type, NumOfChannels, Length and SamplingInterval parameters are ignored.
- Type (optional) Type of the new data set. The four data types below are allowed:
 - viDtTimeDomain
 - viDtTimeDomainComplex
 - viDtFrequencyDomain
- viDtFrequencyDomainComplex (🤷 see also <u>Section 4.1 as of page 97</u>)
- NumOfChannels (optional) Number of channels in the new data set
- ${\tt Length}$ (optional) Length of the new data set in data points
- SamplingInterval (optional) Sampling interval in microseconds
- Layers (optional) Number of frequency levels in the data set
- LayerLowerLimit (optional) Frequency assigned to the lowest frequency level
- LayerUpperLimit (optional) Frequency assigned to the highest frequency level
- LayerFunction (optional) Increment function between the frequency levels of a data set.
 - You will find the possible values of this property in <u>Chapter 4 as of page 97</u>.

Specifies important properties of the data set. This method replaces the Create or CreateEx call and can be used if you wish to take over some of the channels of the parent node into the new data set and optionally wish to add further channels (see also Section 1.3.4 as of page 26).

In contrast to Create and CreateEx, you cannot create a raw data node of a new history file. You can only create data sets that have a parent node. Specifications such as the length of the data set or the data type are determined by the parent node.

The ChannelMap array allows you to specify what data is to appear in the channels of the new data set. In this context, you can specify for each channel the number of a channel in the parent node in order to take over the data of this channel. You can also specify 0 in order to define the contents of the channel using WriteData. In this way, you can rearrange the channels in any way you wish or delete them by omitting them from the specification.

If, for example, you use an array with the values (1, 0, 0, 2) as ChannelMap, you take over the first channel of the parent node as the first channel of the new node and the second channel of the parent node as the fourth channel of the new node. The values of the second and third channels of the new node are defined using WriteData. If the parent node contains a third channel, this is not taken over.

Sub CreateWithChannelMap(NodeName As String,

ParentNode As HistoryNode, ChannelMap() as Long)

CreateWithChannelMap

Definition

Parameters	NodeName Name of the new node ParentNode Parent node of the new node ChannelMap This array specifies the source of the data for each channel of the new node. Specify 0 in order to write new values to the channel in the node or specify a channel num- ber of the parent node to take over this channel. The length of the array determines the number of channels in the new node.
Finish	Completes creation of the new node. Once you have called the Create or CreateEx meth- od, you should call either Cancel or Finish before the end of your BASIC script. If you call Finish from the integrated BASIC interpreter, execution of your script is automat- ically terminated after the method has been processed. This means that any lines that follow Finish will no longer be executed.
Definition	<u>Sub Finish()</u>
RemoveMarker	Removes the marker corresponding to the description. Uppercase/lowercase and spaces in Type and Description are ignored in the comparison.
Definition	Sub RemoveMarker(ChannelNumber As Long, Position As Long,
	Points As Long, Type As String, Description As String)
Parameters	ChannelNumber Number of the channel in which the marker is located. The value 0 means that the marker relates to all channels.
	Position Position of the marker in the data points (1)
	Type Marker type as freely definable text. Markers of the types "New Segment" and "Time 0" are special cases.
	Description Description of the marker. This appears in the EEG view.
SetChannelName	Sets the name of a channel.
Definition	Sub SetChannelName(ChannelNumber As Long, NewName As String)
Parameters	ChannelNumber Number of the channel (1 –) NewName Name of the channel
SetChannelPosition	Sets the position of a channel.
Definition	Sub SetChannelPosition(ChannelNumber As Long, Radius As Single, Theta As Single, Phi As Single)

ChannelNumber Number of the channel (1 –) Radius Radius in millimeters. Set the value 0 if the channel does not have any valid head co- ordinates. Set the value 1 if you assume that the head is an ideal sphere with a uniform radius. Theta Theta in degrees Phi Phi in degrees	Parameters
Sets the unit for the data of a channel, e.g. μV , μV^2 (see also Section 4.2 on page 98). If the unit is not set for a channel, the channel is assigned the unit specified for the entire data set in the Unit property.	SetChannelUnit
Sub SetChannelUnit(ChannelNumber As Long, Unit As VisionDataUnit)	Definition
ChannelNumber Number of the channel (1 –) Unit Unit for the data of the channel	Parameters
Sets a user-defined property for a channel. The name of the property should comprise a namespace (e.g. institute name), a period and then the actual name of the property. The namespace " <i>BrainVision</i> ." is reserved.	SetChannelUserProperty
Sub SetChannelUserProperty(ChannelNumber as Long,	Definition
PropertyName as String, PropertyValue as Variant) ChannelNumber Number of the channel (1) PropertyName Name of the property to be set PropertyValue Value to be set	Parameters
Sets a user-defined property for a data set. The name of the property should comprise a namespace (e.g. institute name), a period and then the actual name of the property. The namespace " <i>BrainVision</i> ." is reserved.	SetDatasetUserProperty
Sub SetDatasetUserProperty(PropertyName as String,	Definition
PropertyValue as Variant)	
PropertyName Name of the property to be set PropertyValue Value to be set	Parameters
Sets a named landmark for the purposes of orientation. Sub SetHeadLandmark (Name As String, Radius As Single,	SetHeadLandmark Definition

Theta As Single, Phi As Single)

Parameters	Name Name of the landmark Radius Radius in millimeters. Set the value 1 if you assume that the head is an ideal sphere with a uniform radius. Theta Theta in degrees Phi Phi in degrees
SetHeadSurface	Describes the head surface as a point cloud. Data stands for a continuous sequence of co- ordinates that describe the points in the order radius, theta and phi.
Definition	Sub SetHeadSurface(Data() As Single)
Parameters	Data Coordinates of the points
SetMarkerUserProperty	Sets a user-defined property for a marker. The first parameters identify the marker in which the property is to be set. The last two parameters specify the name and value of the property. The name of the property should comprise a namespace (e.g. institute name), a period and then the actual name of the property. The namespace " <i>BrainVision</i> ." is reserved.
Definition	Sub SetMarkerUserProperty(ChannelNumber as Long, Position as Long, Points as Long, Type as String, Description as String, Proper- tyName as String, PropertyValue as Variant)
Parameters	<pre>ChannelNumber Number of the channel in which the marker is located. The value 0 means that the marker relates to all channels. Position Position of the marker in the data set in data points (1) Points Length of the marker in data points Type Marker type as freely definable text. Markers of the types "New Segment" and "Time 0" are special cases. Description Description of the marker. This appears in the EEG view. PropertyName Name of the property to be set PropertyValue Value to be set</pre>
SetRefChannelName	Sets the name of the channel that is to be used as the reference channel for the specified channel.
Definition	Sub SetRefChannelName(ChannelNumber As Long, NewName As String)
Parameters	ChannelNumber Number of the channel (1 –) NewName Name of the referenced channel
SetSecondChannelPosition	Sets an additional position that describes the channel on the head surface. This specifica- tion is used when an additional position is assigned to a channel in addition to its own coor- dinates (for instance with the Coherence transform).
Definition	Sub SetSecondChannelPosition(ChannelNumber As Long, Radius As Single, Theta As Single, Phi As Single)

<pre>ChannelNumber Number of the channel (1) Radius Radius in millimeters. Set the value 0 if the channel does not have any valid head co- ordinates. Set the value 1 if you assume that the head is an ideal sphere with a uniform radius. Theta Theta in degrees Phi Phi in degrees</pre>	Parameters
This function is only needed if a macro is used in a history template. If information from a his- tory node which is neither the current node nor the parent of the current node is needed to calculate the new data set in this case, then this node may not have been calculated as yet. Calling this function informs the program of this. In this case the program will continue with creation of other history nodes and will try to create the node again later.	TryLater
Sub TryLater()	Definition
Writes data to the data set. You can write data either channel by channel or simultaneously for all channels. For reasons of performance, it is recommended that you write data to all channels simultaneously. If you have used CreateWithChannelMap, you only need to write data to those channels that you actually wish to create from scratch. For example, if you have specified 0 twice as the number of the source channel, you should use WriteData in exactly the same way as if you wanted to create a data set containing only two channels. You can use the Position and Points parameters to write the data section by section. This is necessary if the data set is too large for the available memory, for example. Although	WriteData
it is possible to write the sections out of sequence, this approach is not recommended for reasons of performance. It is possible that each data point that is to be written is made up of multiple values. This is the case if you are writing multiple channels simultaneously, but also if the data set contains complex data, for instance. In this event, the values within a data point are always multi- plexed. Sub WriteData (ChannelNumber As Long, Position As Long,	Definition
Points As Long, Data() As Single)	
<pre>ChannelNumber Number of the channel to be written. The value 0 means that the block cov- ers all channels. In this case the data must be available in multiplexed form. Position Number of the first data point to be written (1) Points Number of data points to be written</pre>	Parameters

Data Data to be written

2.23.3 Properties

Averaged	Set this flag if the data set contains averaged data. Among other things, this specification is used to lock or unlock transforms in the <i>Transformations</i> tab.
Definition	Averaged As Boolean
Description	Reads or sets the description of the operation and its input parameters.
Definition	Description As String
Description2	Reads or sets the description of the operation results.
Definition	Description2 As String
SegmentationType	Reads or sets the segmentation type of the data set. The segmentation types are described in <u>Section 4.3 on page 99</u> . Among other things, the segmentation type is used to lock or unlock transforms in the <i>Transformations</i> tab.
Definition	SegmentationType As VisionSegType
Unit	Reads or sets the unit for the data in the data set, e.g. μV , μV^2 (see also Section 4.2 on page 98). This unit applies to all channels whose unit has not been set explicitly with SetChannel-Unit().
Definition	Unit As VisionDataUnit

2.24 ProgressBar

2.24.1 Description

The ProgressBar object represents a progress bar. Use a progress bar to keep the user informed of the progress of long-running calculations and to allow the calculation to be canceled.

If multiple progress bars are created at the same time, they are arranged vertically in the same window.

2.24.2 Example

There are two ways of creating an object of the ProgressBar class. If you have included the type library for Analyzer Automation, you can write

Dim pb as New ProgressBar

The type library is automatically included in the integrated BASIC, and you can use this statement. If you have not included the type library, you must instead write the following:

Set pb = CreateObject("VisionAnalyzer.ProgressBar")

The example below shows how to use two nested progress bars. The program is momentarily paused in the inner loop in order to prevent the progress bars from moving too fast. A real application would perform a calculation in place of this pause.

A check is performed in both the inner and outer loops to see whether the user has clicked *Cancel*. It is sufficient for the user to click once. This causes both progress bars to be placed in the state "Cancel" and their UserCanceled property to be set to True.

```
Sub Main
   Dim pb1 As New ProgressBar
   Dim pb2 As New ProgressBar
   ' Initialize objects
   pb1.Init "This title will not be shown", "First Bar"
   pb2.Init "ProgressBar Demo", "Second Bar"
   ' Set value range for progress bar
   pb1.SetRange 0, 5
   pb2.SetRange 0, 100
   pb1.SetStep 1
   pb2.SetStep 1
   For i = 1 To 5
         For j = 1 To 100
              ' Terminate loop if the user clicks "Cancel"
              If pb2.UserCanceled Then
                   Exit For
              End If
              ' Move progress bar 2
```

```
pb2.StepIt
              ' Wait in place of a calculation
              Wait .001
         Next j
         ' Terminate loop if the user clicks "Cancel"
         If pb1.UserCanceled Then
              Exit For
         End If
         ' Move progress bar 1
         pb1.StepIt
         ' Set progress bar 2 to start
         pb2.SetPosition(0)
   Next i
   pb1.SetText "Done 1"
   pb2.SetText "Done 2"
   ' Wait 2 seconds before the bars are removed
   Wait 2
End Sub
```

2.24.3 Methods

Hide	Hides the progress bar window.
Definition	Sub Hide()
Init	Initializes the progress bar and displays it.
Definition	Sub Init(Title As String, Text As String)
Parameters	<pre>Title Title of the progress bar. In the case of nested progress bars, only the title of the first bar is displayed. Text The text associated with the progress bar. The text can be changed subsequently with SetText.</pre>

Sets the position of the progress bar relative to the current position. The position specifies the state that has been reached between the upper and lower range limits.	OffsetPosition
Sub OffsetPosition (Position As Long)	Definition
Position New position of the progress bar relative to the old position	Parameters
Sets the position of the progress bar. The position specifies the state that has been reached between the upper and lower range limits.	SetPosition
Sub SetPosition (Position As Long)	Definition
Position New position of the progress bar	Parameters
Sets the upper and lower range limits. These values are set to 0 and 100 by default. Sub SetRange (Lower As Long, Upper As Long)	SetRange Definition
Lower The lower limit of the range shown Upper Upper limit of the range shown	Parameters
Sets the step size that is used with StepIt. The default value is 10. Sub SetStep (Step As Long)	SetStep Definition
Step Length of the increment for the progress bar	Parameters
This function replaces the existing text. Sub SetText (Text As String)	SetText Definition
${\tt Text}$ The text associated with the progress bar	Parameters
Shows the progress bar window.	Show Definition
Moves the position forward by the step length set in SetStep. The position specifies the state that has been reached between the upper and lower range limits.	StepIt
Sub StepIt()	Definition

2.24.4 Properties

 UserCanceled
 This flag is set if the user has clicked Cancel.

 Query this value in the outer loop of a long calculation, for instance, to determine whether the calculation should be canceled.

 Definition
 UserCanceled As Boolean

 2.25
 Segment

 2.25.1 Description

 The Segment object describes a single data segment within a history node.

2.25.2 Properties

Dataset	Write-protected
	This Dataset object describes the data of a segment. The data set is a subset of the data
	set that contains the segment. All position specifications in this data set relate to the begin-
	ning of the segment.
	The Markers collection of this object no longer contains any "New Segment" markers.
Definition	Dataset As Dataset
DateTime	Write-protected
	Date and time of the beginning of the segment.
Definition	DateTime As Date
TimeZeroOffset	Write-protected
	Position of the zero time point relative to the start of the segment in data points.
Definition	TimeZeroOffset As Long

2.26 Segments

2.26.1 Description

The Segments object is a collection of Segment objects.

2.26.2 Properties

Write-protected	Count
Number of segments in the collection.	
Count As Long	
Default element, write-protected	ltem
Returns a Segment object from the collection.	
Item(Index As Long) As Segment	Definition
Index Specifies the position of the segment in the collection (1)	Parameters

2.27 Transformation

2.27.1 Description

You can call some primary transforms of the Analyzer with parameters using the Transformation object. A list of supported transforms and their parameters is given in <u>Chapter 3</u> as of page 91.

The advantage of this approach compared with calling a transform via the *Transformations* tab is that it enables dynamic parameterization. In other words, the parameters for the transform can be determined at runtime. This means, for example, that results of previously completed operations can be taken into account.

For further information on how to use the Transformation object, refer to Section 1.5 as of page 30.

2.27.2 Methods

Do	Performs a transform.		
	The behavior of the transform is controlled by its parameters. \diamondsuit Suitable parameters for		
	each transform that can be called dynamically are defined in <u>Chapter 3 as of page 91</u> .		
Definition	Sub Do(Transformation As String, Parameters As String,		
	ParentNode As HistoryNode, [NodeName As String])		
Parameters	Transformation Name of the transform		
	Parameters Transform parameters		
	ParentNode The node to which the transform is applied		
	NodeName (optional) Name of the node created by the transform. If no name is input, it is as- signed by the transform.		
TryLater	This function is only needed if a macro is used in a history template. If information from a his-		
	tory node which is neither the current node nor the parent of the current node is needed to		
	Calculate the new data set in this case, then this houe may not have been calculated as yet.		
	creation of other history nodes and will try to create the node again later.		
Definition	Sub TryLater()		

2.28 Window

2.28.1 Description

The Window object describes a tab in the main window. A tab of this sort would typically contain an EEG view, for instance. You can use a Window object to control the behavior of an EEG view.

2.28.2 Methods

ActivateTransientTransfor-	Allows a transient transform to be called. This method can only be used if an EEG view with	
mation	a selected range is shown in the tab.	
Definition	Sub ActivateTransientTransformation(Name As String)	
Parameters	Name Name of the transient transform	

The example selects an interval in the currently open node and creates a transient FFT view. Example ActiveNode.Windows (1).SetMarkedInterval (1001, 512)

ActiveNode.Windows(1).ActivateTransientTransformation "FFT"

Closes the tab.	Close
Sub Close()	Definition
Copies the contents of the tab to the clipboard as an image. This method can only be used if	Сору
an EEG view is shown in the tab.	
Sub Copy()	Definition
Maximizes the window. This method can only be used if data that is open in the main window	Maximize
is represented in windows and not in the form of tabs.	
Sub Maximize()	Definition
Minimizes the window. This method can only be used if data that is open in the main window	Minimize
is represented in windows and not in the form of tabs.	
Sub Minimize()	Definition
Prints the content of the tab. This method can only be used if an EEG view is shown in the tab.	Print
Sub Print()	Definition
Restores the window to its original size. This method can only be used if data that is open in	Restore
Sub Postoro ()	Definition
<u>sub restore()</u>	Demittion
Sets the data range displayed in the EEG view. This method can only be used if an EEG view	SetDisplayedInterval
Is shown in the tab.	Definition
Sub SetDisplayedincerval (Position as Long, DataPoints as Long)	Demittion
Position The first data point displayed (1 –)	Parameters
DataPoints Number of data points displayed	
Sets the selected range in the EEG view. This method can only be used if an EEG view is	SetMarkedInterval
shown in the tab. The range must lie within the displayed interval.	
Sub SetMarkedInterval(Position as Long, DataPoints as Long)	Definition
Position The first selected data point (1 –)	Parameters
DataPoints Number of data points selected	

MoveMarkedInterval	Moves the selected range in the EEG view. This method can only be used if an EEG view is shown in the tab.
Definition	Sub MoveMarkedInterval(Points as Long)
Parameters	Points Number of data points by which the range is to be moved
SetScalingRange	Sets the scaling range of the EEG view. This method can only be used if an EEG view is shown in the tab.
Definition	Sub SetScalingRange(MinValue as Single, MaxValue as Single)
Parameters	MinValue Lower limit of the scaling range
	MaxValue Upper limit of the scaling range
ResetScalingRange	Resets the scaling range of the EEG view to the default. This method can only be used if an EEG view is shown in the tab
Definition	Sub ResetScalingRange()

2.28.3 Properties

DisplayBaselineCorrection	Switches baseline correction of the EEG view on or off. Only the baseline of the display is changed, not the data itself. This property can only be used if an EEG view is shown in the tab.
Definition	DisplayBaselineCorrection As Boolean
DisplayDataPoints	Write-protected
	Number of data points shown in the EEG view. This property can only be used if an EEG view
	is shown in the tab.
Definition	DisplayDataPoints as Long
DisplayStartPosition	Write-protected
	The first data point shown in the EEG view (1) . This property can only be used if an EEG view is shown in the tab.
Definition	DisplayStartPosition as Long
HistoryNode	Write-protected
	Returns the history node whose data is being displayed. This property can only be used if an
	EEG view is shown in the tab.
Definition	HistoryNode As HistoryNode

Write-protected	MarkedIntervalDataPoints	
Number of data points selected in the EEG view. This property can only be used if an EEG view		
is shown in the tab.		
MarkedIntervalDataPoints as Long	Definition	
Write-protected	MarkedIntervalStartPosi-	
The first data point selected in the EEG view (1) . This property can only be used if an EEG	tion	
view is shown in the tab.		
MarkedIntervalStartPosition as Long	Definition	
Title of the tab.	Title	
Title As String	Definition	
Write-protected	Туре	
Type of the tab. This value is "EEGData" if an EEG view is shown in the tab.		
Type As String	Definition	
EEGData EEG data window	Return value	
Macro Macro editing window (for editing the BASIC source code)		
Template Template editor (for editing history templates)		
The example selects a data range in the currently active tab, provided that this is actually a	Example	
view showing EEG data.		
<pre>If ActiveNode.Windows(1).Type = "EEGData" Then</pre>		
<pre>ActiveNode.Windows(1).SetMarkedInterval(1000,512)</pre>		

End If

2.29 Windows

2.29.1 Description

The $\tt Windows$ object is a collection of $\tt Window$ objects corresponding to the tabs in the main window.

2.29.2 Properties

Count	Write-protected Number of tabs.
Definition	Count As Long
Item	Default element, write-protected
	Returns a Window object from the collection.
Definition	Item(TitleOrIndex As Variant) As Window
Parameters	TitleOrIndex Specifies the position of the tab in the collection (1 –) or its title

2.30 Workspace

2.30.1 Description

The Workspace object describes an Analyzer workspace.

2.30.2 Properties

ExportFileFolder	Write-protected
	Default folder for exported files.
Definition	ExportFileFolder As String
FullName	Write-protected
	Name of the workspace file including fully-qualified path.
Definition	FullName As String
HistoryFileFolder	Write-protected
	Folder for history files.
Definition	HistoryFileFolder
Name	Write-protected
	Base name of the workspace file without folder and file name extension.
Definition	Name As String

Write-protected Folder for raw data. RawFileFolder As String

RawFileFolder

Definition

2.31 Workspaces

2.31.1 Description

The Workspaces object is a collection of Workspace objects. It is used in the Application object to list all the workspaces in the Workfiles folder.

2.31.2 Methods

Rereads the workspace files that are present in the Workfiles folder.	Refresh
Sub Refresh()	Definition

2.31.3 Properties

Write-protected	Count
Number of workspaces available.	
Count As Long	Definition
Default element, write-protected	ltem
Returns a Workspace object from the collection.	
Item (NameOrIndex As Variant) As Workspace	Definition
NameOrIndex Specifies the position of the workspace in the collection (1 –) or its name	Parameters

Chapter 3 Callable transforms

The currently available transforms and their parameters are listed in this chapter. They can be called as follows:

Transformation.Do(Transformation As String, Parameters As String,

ParentNode As HistoryNode, [NodeName As String])

The sections below describe the Transformation and Parameters arguments for the different transforms.

The following general syntax is used irrespective of the transform that is being called in order to pass the transform parameters to the Do method.

The notation for the parameters always takes the form of variable/value pairs. Variable names are not case-sensitive. If multiple variables are specified, they are separated by semicolons (;). The following example uses the variables <code>Highcutoff</code>, <code>Lowcutoff</code> and <code>Notch</code>:

Transformation.Do "Filters",

"Highcutoff=70;Lowcutoff=2;Notch=50", ActiveNode, "Test"

If a variable has multiple values, these are separated by commas (,):

Transformation.Do "Filters",

"Highcutoff=70.48;Lowcutoff=2.24;Notch=50", ActiveNode, "Test"

If variables are defined as vectors, the elements are indexed with parentheses (). The first index is 1. A value without parentheses is interpreted the same as a value with index (1), i.e. Highcutoff is equal to Highcutoff(1):

Transformation.Do "Filters", "Highcutoff = 12,48;" &

"Highcutoff(3)=70,48; Lowcutoff(3) = 2; Notch(3)=50",

ActiveNode, "Test"

The variables can occur in any sequence in the parameters.

For detailed information on the transforms below, refer to the Analyzer User Manual. Here, we shall only describe the parameter syntax for the transforms.

3.1 Band Rejection

Name of the transform: BandRejection

Table 3-1.	Parameters	for Band	Rejection
------------	------------	----------	-----------

Variable	Description
Filter	A band rejection filter is defined. The variable can be indexed since multiple filters can be defined. A filter is always described by three values: Frequency, bandwidth and order. The order can only be 2 or 4. Example: Fil- ter (1) =17, 2, 4; Filter (2) =50, 2, 2;
Channels	This variable lists the channels to be filtered by number. Example: Channels=1, 2, 15 The variable is not allowed to be defined at the same time as the NamedChannels variable. If neither Channels nor NamedChannels has been defined, all channels are filtered.
NamedChannels	Here, the channels to be filtered can be listed by name. Example: NamedChannels=Fp1, F7, Oz This variable is not allowed to be defined at the same time as the Channels variable.

Examples:

Transformation.Do "BandRejection", "Filter=20,2,4", ActiveNode

This defines a band rejection filter of 20 Hz with a bandwidth of 2 Hz and an order of 4. All channels are filtered.

Transformation.Do "BandRejection",

"Filter(1)=20,2,4; Filter(2)=30,3,4;Channels=2,4,16",

ActiveNode

This defines a band rejection filter of 20 Hz with a bandwidth of 2 Hz and an order of 4, plus a filter of 30 Hz, a bandwidth of 3 Hz and an order of 4. Channels 2, 4 and 16 are filtered.

Transformation.Do "BandRejection", _______

"Filter=20,2,2;NamedChannels=Fp1", ActiveNode

Here, the Fp1 channel is filtered with a band rejection filter of 20 Hz, a bandwidth of 2 Hz and an order of 2.

3.2 Complex Demodulation

Name of the transform: ComplexDemodulation

Variable	Description
output	Use this variable to specify whether the power or phase is to be output. This variable accepts the values <code>power</code> and <code>phase</code> .
begin	Start of the frequency band in hertz.
end	End of the frequency band in hertz.

Example:

Transformation.Do "ComplexDemodulation",

"output=phase;begin=10;end=20", ActiveNode

The phase is output for the frequency band 10 Hz through 20 Hz.

3.3 Formula Evaluator

Name of the transform: Formula

Table 3-3. Parameters for Formula Evaluator

Variable	Description
Formula	This variable describes the formula for calculating a new chan- nel as text. Since several formulas can be defined, the variable can be indexed. The formula is input in accordance with the syntax of the Formula Evaluator. For a description of the syn- tax, refer to the Analyzer User Manual. Example: Formula(1) = Fp1Power = Fp1 * Fp1

Variable	Description
Unit	This variable describes the unit for a newly calculated chan- nel. If the unit is not specified, microvolts are taken by default. The possible values are (μ can be replaced by u , ² can be replaced by 2, and no distinction is made between uppercase and lowercase): None (without a unit) μV or uV $\mu V/Hz$ or uV/Hz μV^2 or uV/Hz μV^2 or uV/Hz μV^2 or uV/Hz $\mu V^2/Hz$ or uV/Hz $\mu V/m^2$ or $uV/m2$ Example: Unit (1) = $uV2$
KeepOldChannels	This variable accepts the values False and True. It defines whether the data of the parent node is to be included in the new data set. Example: KeepOldChannels = True

Table 3-3. Parameters for Formula Evaluator

Examples:

Transformation.Do "Formula",

```
"Formula(1) = RelationFp1Fp2 = Fp1 / Fp2; Unit(1) = none",
```

ActiveNode

The new data set contains a new channel named *RelationFp1Fp2*. The data does not have a unit. The data of the parent node is not kept.

Two new channels, Fp1' and Fp2', are created. The unit for these channels is μ V, as the unit was not explicitly defined. The data of the parent node is kept.

3.4 IIR Filters

Name of the transform: Filters

Table 3-4. Parameters for IIR Filters

Variable	Description
LowCutoff	A low-cutoff filter is defined. The variable can be indexed. In this case, the index signifies the number of the channel to be filtered. The filter is described by two values – frequency and slope in db/octave. The slope can have the value 12, 24 or 48. If it is not specified, 12 is taken by default. Example: LowCutoff $(1) = 2, 24$; LowCutoff $(2) = 4$;
HighCutoff	This variable relates to a high-cutoff filter. Otherwise the description of the low-cutoff filter above also applies to this filter. Example: HighCutoff(1)=70,24; HighCutoff(2)=70;
Notch	A band rejection filter can be specified for power-line noise. A channel can be indexed here, too, in the same way as for low-cutoff and high-cutoff filters. The permissible values for this filter are 50 or 60. Example: Notch=50
IndividualFilters	This variable accepts the values False and True. This variable defines whether the channels are to be filtered individually or if they are all to be given the same filters. Normally the program will autonomously decide whether individual filtering is required. If an index greater than 1 is used somewhere in the filter parameters, it switches to individual filtering. Otherwise all channels are filtered in the same way. The variable therefore only has to be set to True if just the first channel needs to be filtered. Example: IndividualFilters=True

Examples:

Transformation.Do "Filters", "HighCutoff=70", ActiveNode

A high-cutoff filter of 70 Hz is defined. Since the slope is not specified, 12 db/octave is used. All channels are filtered.

Transformation.Do "Filters",

"LowCutoff(10)=0.535,48;HighCutoff(10)=70,48;Notch(10)=50",

ActiveNode

Only channel ten is filtered here. This is done with a low-cutoff filter of 0.535 Hz, 48 db/octave, a high-cutoff filter of 70 Hz, 48 db/octave and a notch filter of 50 Hz. Transformation.Do "Filters", "IndividualFilters=True; " & ____

"LowCutoff(1)=2", ActiveNode, "Test"

Here, only the first channel is filtered. Filtering is performed with a low-cutoff filter of 2 Hz.

•

This chapter describes the various enumerator types.

Note that the integrated BASIC interpreter does not permit declaration of enumerator variables.

The example below will trigger an error message to this effect:

Dim vdt As VisionDataType

vdt = viDtTimeDomain

Therefore, wherever you wish to use enumerators as variables, you should declare the variable as the type Long:

Dim vdt As Long

vdt = viDtTimeDomain

4.1 VisionDataType

The enumerator type <code>VisionDataType</code> defines constants for the various data types that a history node can manage.

The individual constants and the values associated with them are listed in <u>Table 4-1</u>. The numeric values are specified as hexadecimal numbers in BASIC notation. The numeric values were not selected arbitrarily. The last hexadecimal digit of real data types is always 1 and the last hexadecimal digit of complex data types is always 2.

Table (1	Values of the	an um avata v tura	"Vicion Doto Tuno"
10010 4-1.	values of the	enumerator type	visionDatatype

Identifier	Numeric value	Meaning
viDtTimeDomain	&H101	Data in the time domain
viDtTimeDomainComplex	&H102	Complex data in the time domain
viDtFrequencyDomain	&H201	Data in the frequency domain
viDtFrequencyDomainComplex	&H202	Complex data in the frequency domain
viDtTimeFrequencyDomain	&H301	Data in the time-frequency domain (e.g. wavelet data)
viDtTimeFrequencyDomainComplex	&H302	Complex data in the time-fre- quency domain (e.g. wavelet data)
viDtUserDefined	&H10001	User-defined data type

Table 4-1. Values of the enumerator type "VisionDataType"

Identifier	Numeric value	Meaning
viDtUserDefinedComplex	&H10002	User-defined data type, com- plex
viDtUserDefinedNoMatrix	&H100FF	User-defined data type that does not fit in the standard matrix

4.2 VisionDataUnit

The enumerator type <code>VisionDataUnit</code> defines constants for the various units that can be used in EEG channels.

If a channel uses viDuUnitless as the value of its Unit property, the convention is that it can also use a user-defined unit. In this case, the user-defined unit is entered as a value of the UnitString property. This convention was chosen in order to allow known units to continue to be processed automatically (viDuMicrovoltSquare as power values) while at the same time completely excluding user-defined units from any such processing.

The individual constants and the values associated with them are listed in Table 4-2.

Table 4-2. Values of the enumerator type "VisionDataUnit"

Identifier	Numeric value	Meaning
viDuMicrovolt	0	μV
viDuUnitless	1	Without a unit
viDuMicrovoltsPerHertz	2	μV/Hz
viDuMicrovoltSquare	3	μV^2
viDuMicrovoltSquarePerHertz	4	$\mu V^2/Hz$
viDuMicrovoltPerMeterSquare	5	$\mu V/m^2$

4.3 VisionSegType

The enumerator type <code>VisionSegType</code> defines constants for the various segmentation types that can be used in EEG data sets.

Data sets whose segmentation type is "not segmented" or viStNotSegmented can nevertheless contain "New Segment" markers. In this event, the "New Segment" markers indicate interruptions during recording rather than segments in the traditional sense.

The convention is that the segments of a data set whose segmentation type is viStMarker, viStMarkerAndABE or viStFixedTime must all be the same length. This assumption is important in many scenarios, e.g. for the Average transform. You should avoid creating data sets, for example with NewHistoryNode, that do not observe this convention and which can therefore not be processed meaningfully.

The individual constants and the values associated with them are listed in Table 4-3.

Identifier	Numeric value	Meaning
viStNotSegmented	0	Not segmented
viStMarker	1	Segmented relative to marker position
viStMarkerAndABE	2	Segmented relative to marker position with the aid of an ABE expression
viStFixedTime	3	Segmented in fixed time units
vistManual	4	Segmented manually; segments of different lengths are possible

Table 4-3. Values of the enumerator type "VisionSegType"

4.4 VisionLayerIncFunction

The enumerator type VisionLayerIncFunction defines constants for the increment functions between the frequency levels (layers) of a data set. Frequency levels occur with continuous wavelets, for instance.

The increment function specifies what frequencies are assigned to the individual frequency levels. The frequencies of the top and bottom levels and the number of levels are predetermined. The frequencies of the intermediate levels are then determined in such a way that the range between the top and bottom frequencies is divided in the ways specified by the increment function. For example, if viLifLinear is used, the frequency levels are arranged at constant intervals.

The individual constants and the values associated with them are listed in Table 4-4.

Table 4-4. Values of the enumerator type "VisionLayerIncFunction"

Identifier	Numeric value	Meaning
viLifLinear	0	Linear (i.e. a constant interval between the frequency levels)
viLifLogarithmic	1	Logarithmic distance between the fre- quency levels

Chapter 4 Enumerator types

This chapter lists the error codes used by Analyzer Automation along with the associated messages. These error codes are set when an error occurs during execution of an Automation call.

The error numbers only indicate the lower 15 bits of the error code. To extract the error number, the upper bits of the error code have to be masked out.

If a macro has not defined any custom error handling, the error message associated with the error number is displayed in the status bar of the macro editing window. The programming example below shows how to use the error handling provided by the integrated BASIC interpreter to show custom error messages:

```
Sub Main
    ' Initialize error handling
    On Error GoTo CheckError
    Set hf = HistoryFiles(1)
    MsgBox "First channel name: " + hf(1).Dataset.Channels(1).Name
    Exit Sub
CheckError:
    ' Extract Automation error number
    nError = Err.Number And &h7fff
    Select Case nError
    Case 1501
        ' Code for "History file is closed."
        MsgBox "History file is closed."
    End Select
End Sub
```

Table 5-1 lists all the error codes used.

Table 5-1. Error codes

Code	Message
1500	Display name of History File: Invalid characters found in '%s'. '%s' can't be used for naming.

Code	Message
1501	History file is closed.
1502	Can't handle this data type.
1503	History node is invalid.
1504	History node not found.
1505	The data set is currently not available.
1506	History file is invalid.
1507	History node does not contain data.
1508	History file not found.
1509	Can't access workspace.
1510	Index is out of range.
1511	A history node with the same name already exists.
1512	Rename History Node: Invalid characters found in '%s'. '%s' can't be used for naming.
1513	Channel not found.
1514	No workspace is loaded.
1515	Window does no longer exist.
1516	Requested data is out of segment range.
1517	Window not found.
1518	History node collection is invalid.
1519	History template not found.
1520	History Template: Type mismatch.
1521	User canceled history template processing.
1522	The start node '%s' was not found in the history template '%s'.
1523	User defined message.
1524	A history file with this display name already exists in the current work- space.
1525	Can't change display name on open history file.
1526	'Create' has not been called.
1527	Invalid data size or format.
1528	Channel is out of range.
1529	NewHistoryNode.Create: Invalid data type.
1530	NewHistoryNode.Create: Parameters mismatch.
1531	NewHistoryNode.AddMarker: Marker out of range.

Table 5-1. Error codes

Code	Message
1532	NewHistoryNode.WriteData: Can't write data. Data set inherits data.
1533	Transformation.Do: Transformation '%s' not found.
1534	Transformation.Do: '%s', parameters '%s' are not correct.
1535	Transformation.Do: Type mismatch
1536	Error, warning or other message from Transformation>
1537	Dataset.GetData: The "ChannelList" parameter is incorrect.
1538	The requested data layer is out of range.
1539	The requested number of layers is invalid.
1540	Wrong function for this type of data. Use NewHistoryNode.CreateEx().
1541	The requested layer function is not supported.
1542	Workspace not found.
1543	Landmark not found.
1544	Marked interval can only be inside of a displayed interval.
1545	User canceled operation.
1546	Invalid characters in history node name. '\/:' can't be used for naming.
1547	Progress bar is not initialized.
1548	Menu item not found.
1549	FastArray: First element is out of range.
1550	FastArray: Division by Zero.
1551	FastArray: Source data array is not initialized.
1552	FastArray: Out of memory.
1553	Fast Array: Target data array is not initialized.
1554	FastArray: Only one dimensional floating point single precision arrays are supported.
1555	FastArray.Parameters lead into infinite loop.
1556	FastArray: Parameter exceeds the limit of 536870912.
1557	FastArray: The parameters would lead into more than 536870912 assignments. This means long lasting operations that can't be interrupted.

Chapter 5 Error codes

Chapter 6 Analyzer Automation .NET

As of Version 2.0, you can access the Analyzer not only via the OLE Automation facility but also by using the Microsoft .NET Framework. For this purpose, an interface library has been set up that you can use directly without the need to access the COM type library.

Currently, no separate Reference Manual is available for .NET Automation. However, the content of the interfaces for .NET Automation largely correspond to the object classes for COM Automation. This chapter is intended to provide a guideline for developers who wish to use .NET Automation that will allow them to use the existing documentation for COM Automation efficiently for their purposes.

.NET Automation is primarily intended to be accessed from within Analyzer program components (transforms, <u>add-ins</u>). We shall assume that this application scenario applies. We shall not discuss how to create a new project for developing Analyzer program components under .NET, but will instead assume that you wish to make use of Automation from an existing project. We shall also assume that you are using Visual Studio and the C# programming language.

6.1 Overview

.NET Automation follows the programming conventions of C and C# (rather than those of BASIC). The most important consequence of this is that lists and arrays are numbered starting with 0.

In the same way, -1 is used instead of 0 to indicate an invalid list item. If, for example, a marker is to apply to all channels, the value of its Channel property is -1.

You can include .NET Automation by adding a reference to the library *AnalyzerAutomation.dll* to your add-in or transform project. All .NET Automation classes are in the namespace Bra-inVision.AnalyzerAutomation. This namespace will not be explicitly shown below.

The interfaces used by Automation correspond to the object classes for OLE Automation, with the names being prefixed by the letter I. This means, for example, that IChannel corresponds to the object class Channel. The object class hierarchy is shown in Figure 1-3 on page 20.

The names of the interface members correspond to the names of their counterparts in the object classes for OLE Automation. You can use the Object Browser in Visual Studio to view the exact definition of properties and methods. Alternatively, you can use the *Go To Definition* function in Visual Studio to view individual interface definitions.

The IApplication interface plays a key role in the same way as the Application object class. The AutomationSupport class returns an instance that represents the application. The sample program below opens the first history file in a workspace:

AutomationSupport.Application.HistoryFiles[0].Open()

Unlike the approach taken by OLE Automation, instances of <code>INewHistoryNode</code> are created by calling one of the overloads of

IApplication.CreateNode()

The ActiveNode variable is used in the integrated BASIC interpreter to create nodes that are capable of being used as templates. The node that is active in the Analyzer main window can be determined with the IApplication.ActiveNode property in .NET Automation.

Some of the object classes for OLE Automation define a default object to allow you to access a child collection directly. In .NET Automation, this behavior is implemented in the form of appropriate indexers in the parent object. The two lines of code below are equivalent:

IChannel channel = historyNode.Dataset.Channels[0]

IChannel channel = historyNode.Dataset[0]

Some collections (such as Channels) permit indexing via the name or title of the objects they contain. This option is also available for the corresponding collection in .NET Automation (such as IChannels).

.NET Automation has no equivalent of the FastArray object class, because the program code in Analyzer components is executed extremely efficiently and there is therefore no need for fast array operations.

6.2 Subscribing to Automation events

Events in the IApplication object and the IHistoryFiles object are new features in .NET Automation. You can define event handlers that are called when certain changes occur in the program. Thus, for example, you can define a method that is executed if the user wishes to close a history file.

The events are implemented in accordance with the normal .NET Framework conventions. You should, however, note that the usual argument sender for the event handler has not been used, because the events are generated by objects that are unique throughout the entire program.

Some Automation events allow the event handler to prevent pending changes in the program. This allows you, for instance, to prevent the user from closing a history file whose data is still required for calculations that have not yet been completed. In .NET Automation, this functionality has been implemented using the argument of the event handler.

The example below shows an event handler that prevents the first history file of the workspace from being closed:
```
public void Execute()
{
   // Define event handler
   AutomationSupport.Application.HistoryFiles.TestFileIsLockedO-
   pen
         += new TestLockedOpenEventHandler(TestLockedOpen);
}
void TestLockedOpen(ITestLockedOpenArgument e)
{
   if (e.HistoryFile ==
         AutomationSupport.Application.HistoryFiles[0])
    {
         // File remains open.
         e.SetLockedOpen();
   }
}
```

6.3 Using "NewHistoryNode"

The normal procedure for creating new data sets (see Section 1.3 as of page 21) also generally applies to INewHistoryNode. However, three overloads of IApplica-tion.CreateNode() are now available, so that it is easier to identify the appropriate call for the current application scenario:

If you wish to create a new history file, use the overload

INewHistoryNode.CreateNode(string sFileName)

If you wish to create a new child node containing the same data as its parent node, use the overload

INewHistoryNode.CreateNode(string sName, IHistoryNode parent, bool bInheritData) If you wish to create a new child node and define the data for this node yourself, you should also use the overload

INewHistoryNode.CreateNode(string sName, IHistoryNode parent, bool bInheritData)

If you want to create a child node that both inherits the data of some of the channels of its parent node and also modifies or rearranges channels, use the overload

INewHistoryNode.CreateNode(string sName, IHistoryNode parent, int[] channelMap)

Immediately after you have called CreateNode, you should use the INewHistoryNode.SetDimensions() method to make further basic specifications for the data set. If you wish to create a data set with multiple frequency levels, you can also use INewHistoryNode.SetLayerInformation() to make specifications regarding the frequency levels.

If you wish to change the markers of the new data set, you can use the INewHistoryNode.Markers collection. You can change the markers contained in the collection directly by assigning new values to their properties. You can delete markers from the collection or add new markers. If you wish to move markers to a new position in the data set, you do not have to take account of the sequence of the markers. The markers in the collection are automatically sorted by their positions when you call INewHistoryNode.Finish().

The ActiveNode variable is used in the integrated BASIC interpreter to create nodes that are capable of being used as templates. You can determine the node that is active in the Analyzer main window in .NET Automation using the IApplication.ActiveNode property.

When you create the node, you can specify the view that is to be used by default when it is opened. To do this, assign the unique identifier of the view to the NewHistoryNode.RequestedView property. You can take the identifier of the view from its XML definition (id attribute of the <View> tag, the value can, for example, be "EE10458E-8BA8-4276-B469-E15E785264C2" as in the file *StandardView.xml*).

In contrast to the behavior with OLE Automation in the integrated BASIC interpreter, execution of an add-in is not automatically terminated when you call the INewHistorryNode.Finish() or ITransformation.Do() methods.

The example below works in the same way as the example in Section 1.3.2 on page 23:

```
public void Execute()
```

{

```
// Create the object and define basic properties.
IApplication application = AutomationSupport.Application;
INewHistoryNode newNode =
```

```
// Define channel properties. All other channel properties
// retain the properties inherited from the parent node as
// defaults.
newNode.SetChannelName(0, "Channel B");
newNode.SetChannelName(1, "Channel A");
newNode.SetChannelPosition(3, 1, 0, 90);
```

// Set an interval marker.
newNode.AddMarker(-1, 200, 20, "Bad Interval", "");

newNode.WriteChannelData(0, 0, data);

// Write a sample text for "Operation Infos"
newNode.Description = "Test for .NET automation.";

// Complete the note.

// Insert the GUID that identifies your add-in here.

newNode.Finish(new Guid(AddInGuid));

}

6.4 Additional extensions

.NET Automation includes a number of minor extensions that provide new functions.

The IApplication interface contains an extended list of functions for displaying messages to the user: AskYesNo, AskOKCancel, Message, Warning and Error. If the add-in is run inside a history template, and messages are only output to a log, execution is not interrupted by the functions.

The FindNode and FindNextNode functions of the object class HistoryFile have been replaced by the IHistoryFile.FindNodes() function. This function returns all the nodes with matching names in an array.

With OLE Automation, access to the properties of markers, channels and data sets is achieved on the basis of their property names using the methods or properties PropertyName, PropertyValue and PropertyCount. With .NET Automation, this is achieved by the methods EnumerateProperties and GetUserProperty.

It is now possible to display a data set using a precisely specified EEG view. To do this, pass the unique identifier of the view to the IHistoryNode.ShowView function. You can get the identifier of the view from its XML definition (id attribute of the <View> tag). The following call opens a history node using the grid view:

historyNode.ShowView(new Guid(

"D654817E-4429-4d9b-AF23-6F09F5A471B5"))

Glossary

A

Add-in: Add-ins are Analyzer program components that offer additional functions. Add-ins can also be created by users themselves and are freely programmable. While, for example, they can act as transforms or export components, they internally use a simplified program mechanism.

С

Child node: In the history tree, this refers to the EEG data sets that are subordinate to the current node and represent the following processing steps.

D

Dongle: Pluggable copy protection device.

Ε

EEG view: Method of representing the EEG, such as the grid view, the head view, and the mapping view. A view determines how the channels are arranged in the window, for example.

Export component: Analyzer program element which writes the content of the current data set to a file so that this can be used outside of the Analyzer.

Η

History Explorer: An element in the Analyzer user interface which allows users to edit raw data nodes and created history nodes.

History file: The file on your computer in which the processing steps applied to an EEG file are stored. Also refers to the EEG file displayed in the History Explorer.

History node: Representation of a processing step applied to an EEG file in the Analyzer user interface.

History template: File in which processing steps from the history tree are stored. The processing steps can be executed again automatically elsewhere.

History tree: The processing steps applied to the EEG and displayed in the form of a tree.

L

License: Allows the user to work with one of the optional program components of the Analyzer.

Ν

Network dongle: Pluggable copy protection device for operating the Analyzer on multiple workstations in a network environment.

0

Operation Infos: The descriptive text that summarizes the settings used for the execution of a processing step. The Operation Infos are saved automatically and can be viewed again later.

Ρ

Parent node: In the history tree, the uniquely defined EEG data set directly above the current node.

Primary history file: Primary history files are history files that are based on the EEG raw data, in contrast to secondary history files.

Primary transform: Primary transforms are processing steps which are applied to an existing data set in a history file. This leads to the creation of a new data set below the original data set.

Program component: Analyzer program element that is located outside of the actual program file and is dynamically loaded. By adding new components it is possible to expand the Analyzer's functionality.

R

Raw data node: The top-level EEG data set in a history file. This contains the unmodified EEG data read in from the raw file.

Raw file: The EEG file obtained directly during recording without any modifications.

S

Secondary history file: Secondary history files are history files that are based on data compiled as the results of processing steps from multiple history files.

Т

Transform: Transforms are Analyzer program components that process input data and then output data either in the form of a new EEG data set or directly for display.

Transient transform: Transient transforms are processing steps which are only used for visualization purposes. The data output from a transient transform does not generate a new data set but is instead displayed directly.

W

Workfile: A file containing information on workspaces (*.wksp2), montages (*.mont2) and other user-defined settings.

Workspace: Configuration file which contains storage locations for raw files, history files and exported data. Extension: .wksp2.